

Verwundbarkeit und Resilienz von Energiesystemen

Episode 1: Verwundbarkeit von Energiesystemen

Prof. Dr. Stefan Gößling-Reisemann Universität Bremen

gefördert durch

Übersicht der Lerneinheit

Episode 1: Verwundbarkeit von Energiesystemen

Episode 2: Resilienz von Energiesystemen

Episode 3: Interview mit dem Referenten

Lernziele dieser Episode

Lernziel 1:

Sie verstehen die Dynamik, in der sich das Energiesystem derzeit befindet und die daraus erwachsenden Herausforderungen.

Lernziel 2:

Sie verstehen das Konzept der Vulnerabilität als Maß für Verwundbarkeit von Energiesystemen und verstehen die Methodik zur Bewertung.

Lernziel 3:

Sie können zwischen Stressoren und strukturellen Schwachstellen bei der Bewertung der Verwundbarkeit unterscheiden.

Kurze Wiederholung

Die **Bewertung von Energiesystemen** hatte bisher drei Aspekte in den Blick genommen:

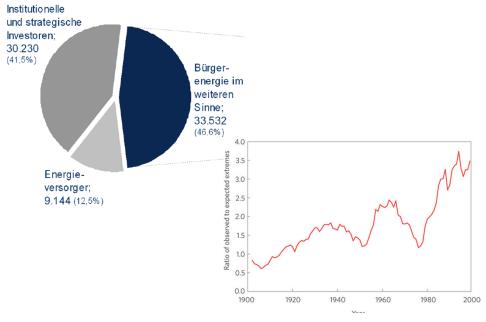
- 1) Energetische Kosten und deren Amortisation
 - Kumulierter Energieaufwand, Erntefaktoren
- 2) Ökonomische Kosten und Nutzen
 - Stromgestehungskosten, Flächenbedarfe
- 3) Ökologische und gesellschaftliche Kosten/Nutzen
 - Kosten-Nutzen Analyse, externe Kosten, Flächenkonflikte

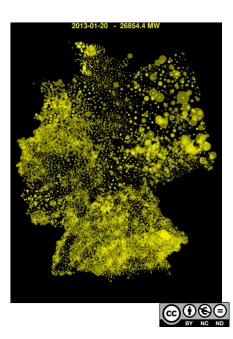
Kurze Wiederholung

- Bisher galt der Blick den Wirkungen des Energiesystems auf Ökonomie, Gesellschaft und Umwelt
- Im Weiteren sollen
 - A) Die Verwundbarkeiten von Energiesystemen
 - B) Die Gestaltungsoptionen für resiliente Energiesysteme

betrachtet werden.

• Der Fokus ist nun also auf externe und interne **Stressoren** für das Energiesystem und dessen **Gestaltung** gelegt.





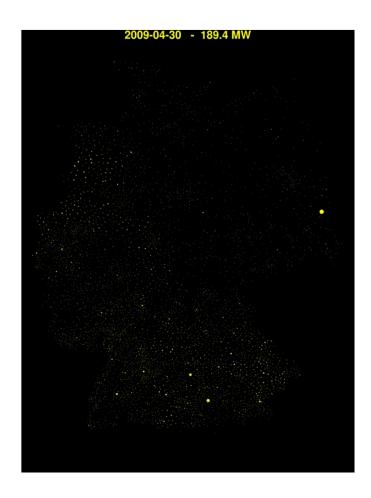
Aktuelle Entwicklung und Verwundbarkeiten

- Bestandsaufnahme aktuelle Entwicklung:
 - Das Energiesystem wird zunehmend komplexer
 - Die sozio-ökonomische Struktur wandelt sich stark
 - Der Klimawandel wirkt auch auf das Energiesystem

Zunehmende Komplexität I

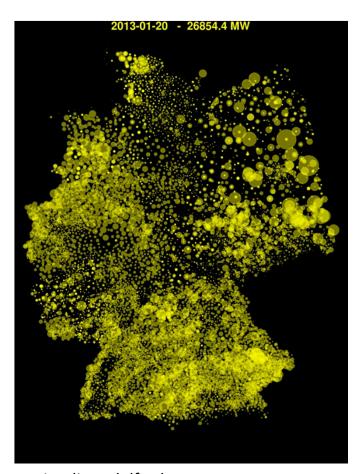
Technische Dynamik:

WEA in Deutschland



www.thewindpower.net

- Anzahl der Erzeugungsanlagen steigt seit 2000 enorm
- <u>281 Photovoltaik-Parks</u> mit 3.5
 GWp installierter Leistung (+ viele Tausend kleine Dachanlagen ~ 37
 GWp)
- 4000+ Windparks + Einzelanlagen (~24000 WEA) mit 35 GW installierter Leistung
- Schwankung der Erzeugung zunehmend (Volatilität)
- Einspeisung vermehrt in niederen Spannungsebenen (Umkehr des Lastflusses)

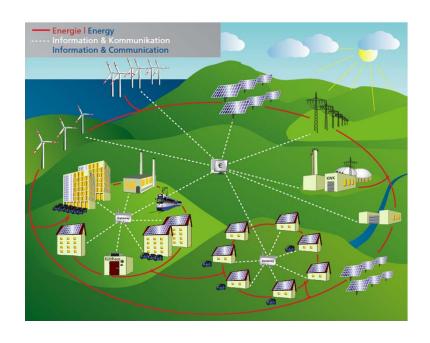


Zunehmende Komplexität II

860.000 Anlagen in vier Jahren (2009 – 2013)

Ende 2014: ca. 1,4 Mio Anlagen

enipedia.tudelft.nl

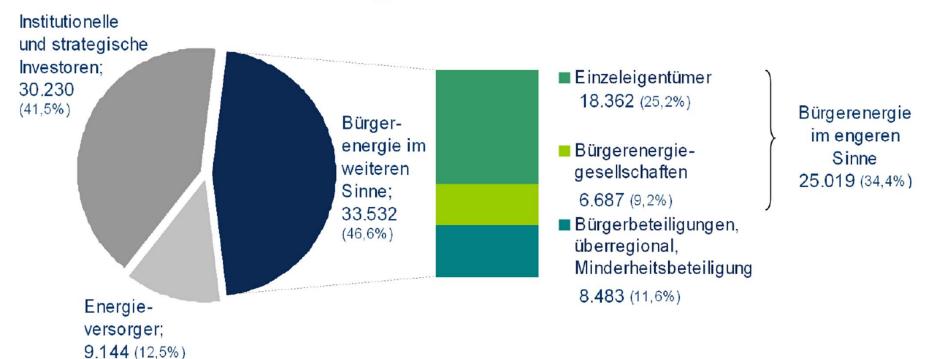

Siehe das Video dazu: http://youtu.be/XpvQNn0n_Qw

Zunehmende Komplexität III

- Komponenten des Energiesystem wachsen zunehmend zusammen
 - Strom und IKT: Smart Grids
 - Strom und Gas: Power-to-Gas
 - Strom und Wärme: Wärmepumpen, Power-to-Heat
 - Strom und Transport: E-Mobilität, Batteriespeicher

Sozio-ökonomische Dynamik / Komplexität IV

- Sozio-ökonomische Dynamik
 - Früher: Erzeugung, Netze und Speicher in der Hand von Oligopolen
 - Zunehmende Bedeutung von kleinskaligen
 Besitzformen: Privatpersonen, Genossenschaften, mittelgroße Betreiber-Gesellschaften
 - ehemalige Geschäfts- und Privatkunden werden zu Versorgern, Netzbetreibern, ...



Sozio-ökonomische Dynamik

Installierte Leistung Erneuerbarer Energien nach Eigentümergruppen in Deutschland 2012 in MW

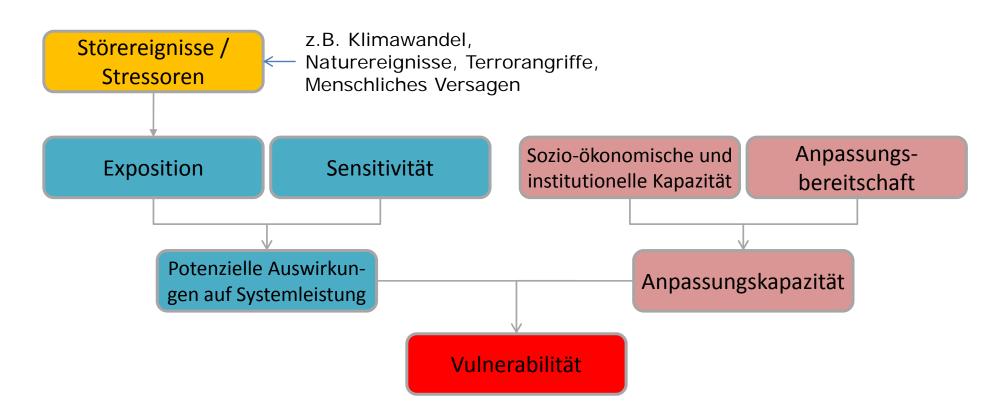
(gesamt 72.907 MW)*

*ohne PSW, Wind Offshore, Geothermie, biogener Anteil des Abfalls

Verwundbarkeiten

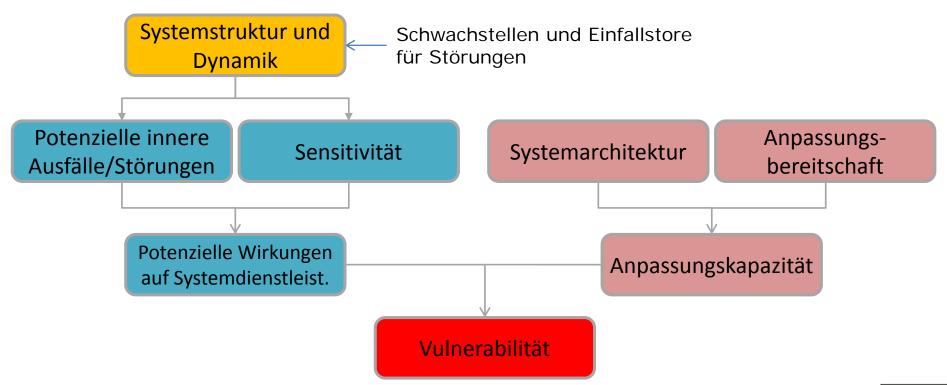
- Das bestehende Energiesystem ist in einem hochdynamischen Umbau begriffen.
- Zeiten des Wandels und der Transformation begünstigen das Auftreten von Krisen oder Zusammenbrüchen.
- Kann man die gefährdeten Bereiche des Energiesystems identifizieren?
 - Für heute?
 - Für die Zukunft?
- Dies versucht die Vulnerabilitätsanalyse (VA)

 Die VA fragt nach den Auswirkungen von externen Stressoren oder inneren Ausfällen auf die System(dienst)leistung. (vgl. Ökosystemleistung)


Die (**Dienst)leistung** eines (sozio-technischen oder sozioökonomischen) Systems besteht aus **Strukturen**, **Produkten**, **Gütern oder Aktivitäten**, die von den Nutzern dieses Systems direkt konsumiert werden und die einen technischen oder ökonomischen **Wert für den Nutzer** des Systems haben, oder auf andere Weise seine Wohlfahrt erhöhen.

> Systemleistungen lassen sich durch quantitative ("was?") und qualitative Eigenschaften ("wie?") beschreiben.

Methode zur Bestimmung der Verwundbarkeit



- Obige Analyse der Verwundbarkeit fokussiert auf prinzipiell bekannte Stressoren
 - Dabei gibt es solche mit bekannten
 Wahrscheinlichkeiten und Ausmaßen
 - Und solche mit unbekannten Wahrscheinlichkeiten und Ausmaßen ("known unknowns")
- Schwieriger sind solche Stressoren über die wir heute noch nichts wissen: echte Überraschungen
 - Über diese herrscht also Ahnungslosigkeit "unknown unknowns"
- Dafür muss die Analyse angepasst werden

 Methode zur Bestimmung der strukturellen Verwundbarkeit

 Methode zur Bewertung der potenziellen Auswirkungen

Gering: weder die Qualitätskriterien noch die tatsächliche Erbringung (Mengenkriterium) der Dienstleistungen werden substantiell beeinträchtigt.

Mittel: die tatsächliche Erbringung (Mengenkriterium) der Dienstleistung wird nicht substantiell beeinträchtigt, aber mindestens eins ihrer Qualitätskriterien.

Hoch: die tatsächliche Erbringung (Mengenkriterium) der Dienstleistung wird substantiell beeinträchtigt.

"susbtantiell" muss von Experten oder Stakeholdern begründet werden. Ggf. sind Grenzwerte zu definieren

Methode zur Bewertung der Anpassungskapazität

Gering: hinsichtlich der potenziellen Auswirkungen gibt es weder eine Anpassungsmaßnahme zur Vermeidung der Auswirkungen, noch die Anpassungsbereitschaft der betroffenen Erbringer und/oder Nutzer.

Mittel: hinsichtlich der potenziellen Auswirkungen besteht zumindest entweder eine Anpassungsmaßnahme zur Vermeidung der Auswirkungen oder die Anpassungsbereitschaft der betroffenen Erbringer und/oder Nutzer.

Hoch: hinsichtlich der potenziellen Auswirkungen besteht sowohl eine Anpassungsmaßnahme zur Vermeidung der Auswirkungen, als auch die Anpassungsbereitschaft der betroffenen Erbringer und/oder Nutzer besteht.

Beispielergebnisse Vulnerabilitätsanalyse

- Klimawandel in Nordwestdeutschland und die Wirkung auf das regionale Energiesystem
 - Kühlwasserverfügbarkeit nimmt ab
 - Heizgradtage nehmen ab
 - Fernwärmenetze weniger ausgelastet
 - Zusätzliche Wärmeüberschüsse im Sommer
 - Kühlgradtage nehmen zu
 - Verbrauchsprofile verschieben sich (Tagesgänge und Jahresgänge)
 - Netzbelastung im Sommer nimmt zu
 - "Idealportfolio" (maximale Eigenversorgung) ändert sich
 - Windprofil verschiebt sich leicht
 - Solarprofil kaum

Beispielergebnisse Vulnerabilitätsanalyse

- Strukturelle Schwächen des Energiesystems Nordwest
 - Hohe Energieintensität
 - Hohe Abhängigkeit von fossilen Energien
 - In einigen Regionen: fehlendes Potenzial zur Selbstversorgung
 - Geringe Diversität
 - Hohe Konzentration bei Versorgern
 - Wenig Erfahrung mit Extremereignissen

Beispielergebnisse Vulnerabilitätsanalyse

- Die strukturelle Verwundbarkeit ist für die Mehrzahl der Bereiche größer als die klimawandelbezogene.
- Besonders verwundbar sind die Versorgung mit Biomasse und die leitungsgebundene Energieversorgung, vor allem die Stromversorgung.

	Primary ene	ВУ			Grid-bound energy/distribution			Demand / Applications	
	Coal	Gas	Wind	Biomass	Electric.	Gas	Heat	Cooling	DSM
Climate Vulnerability	Low	Low	Low	Medium	Medium	Medium	Medium	Low	Low
Structural Vulnerability	Medium	Medium	Low	High	High	Medium	Medium	Medium	Low

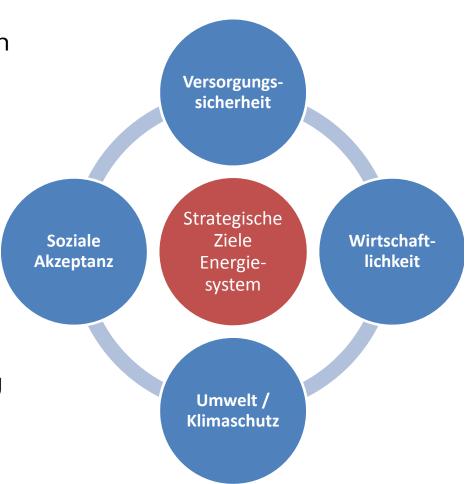
Quelle: Gößling-Reisemann, Wachsmuth und Stührmann (2013) / Gabriel und Meyer (2010)

- Deutsches Energiesystem: Stressoren mit Wirkung auf Versorgungssicherheit
 - Rohstoffengpässe (z.B. wegen steigendem Umweltbewusstsein in Lieferländern)
 - Lieferengpässe bei fossilen Energieträgern durch geopolitische Verwerfungen
 - Mangelnde Investitionen in neue Stromkapazitäten (fehlende Anreize und fehlangepasste Marktmodelle)
 - Massive Verzögerungen beim Leitungsneubau (z.B. durch Akzeptanzprobleme)
 - Systemausfälle durch koordinierte Angriffe auf mehrere Knoten und Verbindungen (z.B. durch Terrorgruppen) oder Virenbefall
 - Hitzewellen oder andere klimatische Extremereignisse

- Stressoren/Schwachstellen mit Wirkung auf Klimaschutzziele
 - Schleppender Ausbau Erneuerbarer Energien
 (Erzeugung und Speicher) durch mangelnde
 Technologiemetalle (seltene Erden, Indium, Lithium, ...)
 - Mangelnde **Diffusion von Elektromobilität** (z.B. durch zu geringe Kostendegression)
 - Inkonsistenzen und Fehlanreize bei CO2-Vermeidungsmaßnahmen
 - Schleppende Umsetzung der Klimaschutzziele (Wärme, Strom, Kraftstoffe) durch Regulierungsdefizite oder mangelnde Anpassungsfähigkeit der Regulierung

- Stressoren/Schwachstellen mit Wirkung auf Wirtschaftlichkeit
 - Mangelnde Verfügbarkeit intelligenter Technologien (für z.B. Smart Grids)
 - Mangelnde Verfügbarkeit von Technologiemetallen (seltene Erden, Indium, Lithium, ...)
 - Zu geringe Diversität bei Erzeugung und dadurch Anfälligkeit für technologiespezifische Risiken
 - Marktmanipulation durch strategisches Verhalten an der Strombörse
 - "Investorenstreik" wg. dauerhaft unklarer politischer Rahmenbedingungen
 - Insolvenzen bei großen Energieversorgern
 - Unwirtschaftliche Auslastung von Wärmesystemen (insbes. Fernwärme) durch steigende Wintertemperaturen

Stressoren/Schwachstellen mit Wirkung auf **Soziale Akzeptanz**


- Intendierte oder nicht-intendierte Skandalisierung und folgende Blockierung von EE-Technologien, Netzausbau, Speichern, etc. begründet durch:
 - Zu geringe Partizipation
 - Zu geringe Transparenz
 - Fehlender Interessenausgleich / mangelnde Fairness
 - Drohende Energiearmut
 - Regionale Disparitäten bei Versorgung und Preisen
 - Mangelndes Vertrauen in Datensicherheit
 - Not-In-My-Backyard (NIMBY) Haltung und Blockade
 - Allgemeine Politikverdrossenheit

Fazit

- Verwundbarkeiten treten an vielen Stellen des Energie-systems auf
- Wichtig ist die Unterscheidung zwischen bekannten und völlig unerwarteten Stressoren
- Genaue Analyse steht noch aus, bisher nur regionale oder sektorale Anwendungen
- Anpassungsfähigkeit muss auf unterschiedlichen Ebenen bestimmt/entwickelt werden
- Zieldreieck der Energie-versorgung muss um "Soziale Akzeptanz" erweitert werden

Aufgaben für das Selbststudium

- 1. Betrachten Sie die Wärmeversorgung in ihrer Wohnung/Haus: durch was ist diese gefährdet? In welchem Maß sind sie (oder das System) darauf vorbereitet? Welche Anpassungsmaßnahmen könnten sie zusätzlich ergreifen?
- 2. Bedenken Sie die zwei Extremfälle einer Stromversorgung: a) völlig zentralisierte Erzeugung und hierarchische Netze zur Verteilung und b) völlige Dezentralisierung mit Kleinstkraftwerken zur autarken Selbstversorgung in jeder Wohneinheit. Welche Verwundbarkeiten ergeben sich jeweils? Wie könnte/müsste man diese jeweils beantworten?
- 3. Die bisherige Definition von Verwundbarkeit beruht auf Erhalt der Systemdienstleistung. Was wäre, wenn man diesen Standpunkt aufgibt? In welchem Maße geht das?

Literatur und weiterführende Quellen

- EEA (European Environment Agency). 2008. Impacts of Europe's changing climate 2008 indicator based assessment. Copenhagen. EEA Report No 4/2008, http://www.eea.europa.eu/publications/eea_report_2008_4. Accessed September 2013.
- Gößling-Reisemann, S.; Gleich, A. von; Stührmann, S.; Wachsmuth, J. (2013a): Climate change and structural vulnerability of a metropolitan energy supply system the case of Bremen-Oldenburg in Northwest Germany. Journal of Industrial Ecology (early view: DOI: 10.1111/jiec.12061).
- Gößling-Reisemann, S., Stührmann, S., Wachsmuth, J., & Gleich, A. von (2013b).
 Vulnerabilität und Resilienz von Energiesystemen. In J. Radtke & B. Hennig (Eds.),
 Energiewende Beiträge der Wissenschaft. Metropolis-Verlag.
- Turner, B. L., II, R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley, J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher, and A. Schiller. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America 100(14): 8074–8079.
- Wachsmuth, J.; Gleich, A. von; Gößling-Reisemann, S.; Lutz-Kunisch, B.; Stührmann, S.: Sektorale Vulnerabilität: Energiewirtschaft. In: Schuchardt, B.; Wittig, S. (Hrsg.): Vulnerabilität der Metropolregion Bremen-Oldenburg gegenüber dem Klimawandel (Synthesebericht). nordwest2050-Berichte Heft 2, Projektkonsortium ,nordwest2050'. S. 95-112. Bremen/Oldenburg.