

Nachhaltigkeitsstrategien – Teil 1

Episode 2: Kritische Betrachtung der Konsistenzstrategie und Recycling

Prof. Dr. Helmut Horn Hochschule für Angewandte Wissenschaften (HAW) Hamburg

Übersicht der Lerneinheit

Episode 1: Kritische Betrachtung der

Konsistenzstrategie und regenerative

Energien

Episode 2: Kritische Betrachtung der

Konsistenzstrategie und Recycling

Episode 3: Interview

Lernziele dieser Episode

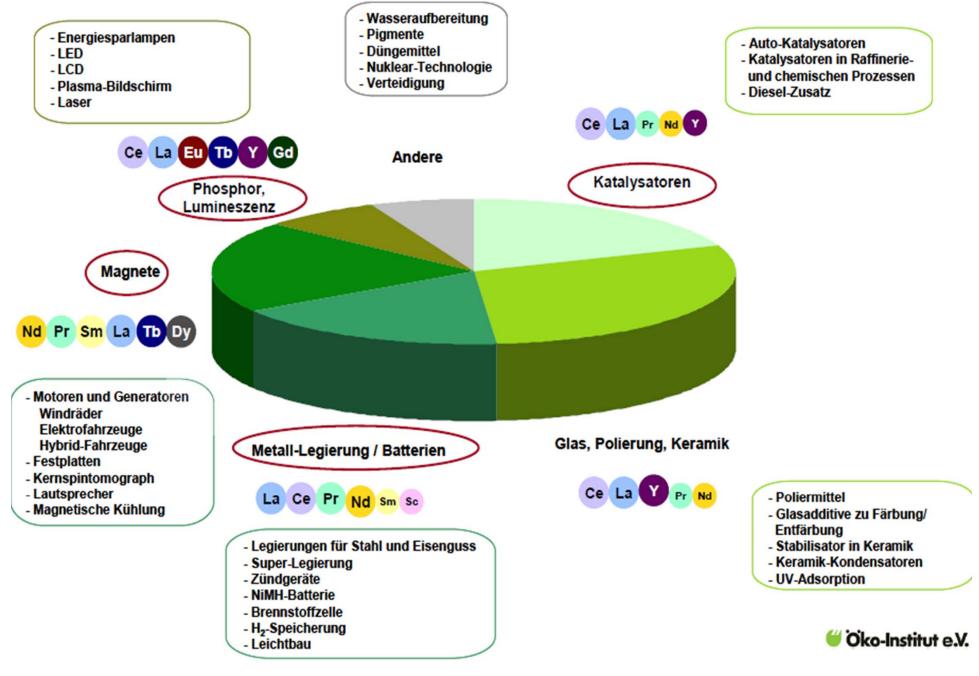
Lernziel 1:

Sie kennen Seltene Erden und können einige Beispiele nennen.

Lernziel 2:

Sie können die Bedeutung von Recycling im Nachhaltigkeitskontext erläutern.

Lernziel 3:


Sie können die Umweltrisiken bei der Gewinnung von Seltenen Erden benennen und bewerten.

- Unter dem Begriff «Seltene Erden» wird eine Gruppe von 17 Elementen zusammengefasst, welche aus den 15 Lanthaniden (Ordnungszahl 57 bis 71) sowie Scandium und Yttrium besteht.
- Wegen ihrer ähnlichen chemisch-physikalischen Eigenschaften sowie ihres gemeinsamen Vorkommens werden sie in der Regel nicht einzeln, sondern als Gruppe behandelt.
- Seltene Erden kommen in vergleichsweise hohen durchschnittlichen Konzentrationen (0,01%) in der Erdkruste vor – die Gehalte der zwei seltensten Seltenen Erden, Thulium und Lutetium, sind beispielsweise rund 200 Mal höher als diejenige von Gold.
- Aufgrund ihrer physikalisch-chemischen Eigenschaften gibt es jedoch nur vergleichsweise wenige Lagerstätten, in denen Seltene Erden angereichert vorliegen. Dies gilt besonders für die schwereren Seltenen Erden.

Quelle: Hintergrundpapier "Seltene Erden" Öko-Institut Freiburg 2010

H H Hydrogen 1,00794																	Helium 4.003
3	4	Kritische REE				LF	LREE Leichte SE			5	6	7	8	9	10		
Li	Be									В	C	N	O	F	Ne		
6.941	9.012182					HREE Schwere SE			Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Osygen 15.9994	Fluorine 18.9984032	Neon 20.1797			
11	12									13	14	15	16	17	18		
Na	Mg											Al	Si	P	S	Cl	Ar
Sodism 22.989770	Magnesium 24.3050											Aluminum 26,981538	Silicon 28.0855	Phosphorus 30,973761	Sulfur 32.066	25.4527	Argon 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	Calcium 40.078	Scandium 44,955910	47.867	So.9415	51.9961	Manganese 54.938049	55.845	Cobalt 58.933200	Nickel 58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Ymium 88 003 85	Zircomum 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Rathenium 101.07	Rhedium 102.90550	Palladium 106.42	Silver 107.8682	Cadmism 112,411	Indium 114,818	Tin 118.710	Antimony 121.760	Tellurium 127.60	ledine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137,327	Lanthonus e oe 15	Hafnium 178,49	Tantalum 180.9479	Tungsten 183,84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195,078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						

5	8	59	60	61	62	63	64	65	66	67	68	69	70	71
C	e	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ceri 140.		aseodym in	Neodymin 44.7	Promethium (145)	Samarium 150.36	Europium 51.0	Gadolinium 157.25	Terbium	aspracia	Holmium 164-93032	Erbium 167,26	Thilium 168 93421	Ytterbium 173,04	Lutetium 174.967
90		91	92	93	94	95	96	97	98	99	100	101	102	103
T	h	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thor		Protectinium	Uranium	Neptunium	Platonism	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelovium	Nobelium	Lawrencium
232.0	381 2	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Knappheit mit hoher Wahrscheinlichkeit

Terbium, Dysprosium, Praseodym und Neodym

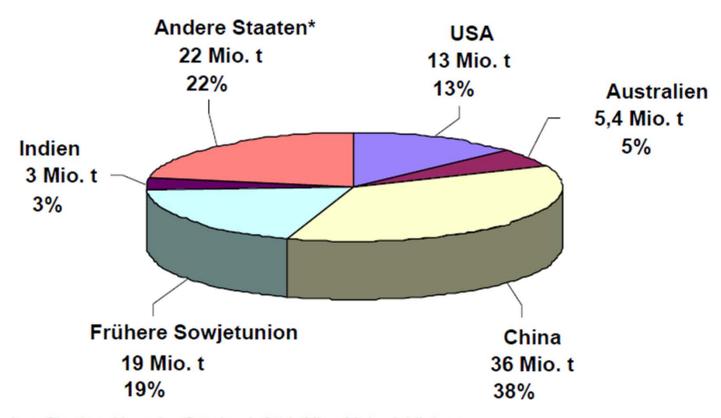
- Hauptanwendung: Permanentmagnete
- Betroffene Techniken: Elektromotoren für Elektro-, (Hybrid) Fahrzeuge, Windkraft, Ni-MH-Batterien, Festplatten, Elektronikprodukte, industrielle Magnetanwendungen (Hebewerkzeuge)

Beispiel: Neodym

- Neodym ist Hauptbestandteil von den leistungsstärksten Dauermagneten und werden unter anderem in Generatoren von Windkraftanlagen und in Elektroautos verwendet.
- In ca. 14 Prozent der neu installierten Windkraftanlagen kommen Nd-Magnete zum Einsatz. Sie arbeiten ohne Getriebe, was sie robust macht und vorteilhaft für den Einsatz in Offshore-Windanlagen ist.
- Für ein Elektroauto wird mit dem Einsatz von ca. 1 kg Neodym gerechnet, für eine Windturbine von 2 t.
- Für das Jahr 2030 kommen unterschiedliche, erheblich differierende Szenarien auf eine Nachfrage von bis zu 53 000 Tonnen pro Jahr.

Beispiel: Neodym

- Neodym ist Hauptbestandteil von den leistungsstärksten Dauermagneten und werden unter anderem in Generatoren von Windkraftanlagen und in Elektroautos verwendet.
- In ca. 14 Prozent der neu installierten Windkraftanlagen kommen Nd-Magnete zum Einsatz. Sie arbeiten ohne Getriebe, was sie robust macht und vorteilhaft für den Einsatz in Offshore-Windanlagen ist.
- Für ein Elektroauto wird mit dem Einsatz von ca. 1 kg Neodym gerechnet, für eine Windturbine von 2 t.
- Für das Jahr 2030 kommen unterschiedliche, erheblich differierende Szenarien auf eine Nachfrage von bis zu 53 000 Tonnen pro Jahr.


Technologie	Bedarf 2006	Bedarf 2030
Laser für die Materialbearbeitung	gering	gering
Hochleistungs-Permanentmagnete	4.000	27.900
Bedarfssumme	4.000	27.900
Bedarf / Rohstoffproduktion 2006	0,55	3,82

Seltene Erden nach Ländern

Seltene Erden Reserven nach Ländern (in Millionen Tonnen und Prozent, USGS 2010)

^{*} Andere Staaten: Kanada, Grönland, Südafrika, Malawi, Vietnam

Quelle: Hintergrundpapier "Seltene Erden" Öko-Institut Freiburg 2010

Weltweite Förderung von Seltenen Erden

Weltweite Förderung von Seltenen Erden in 2009 (USGS 2010*)

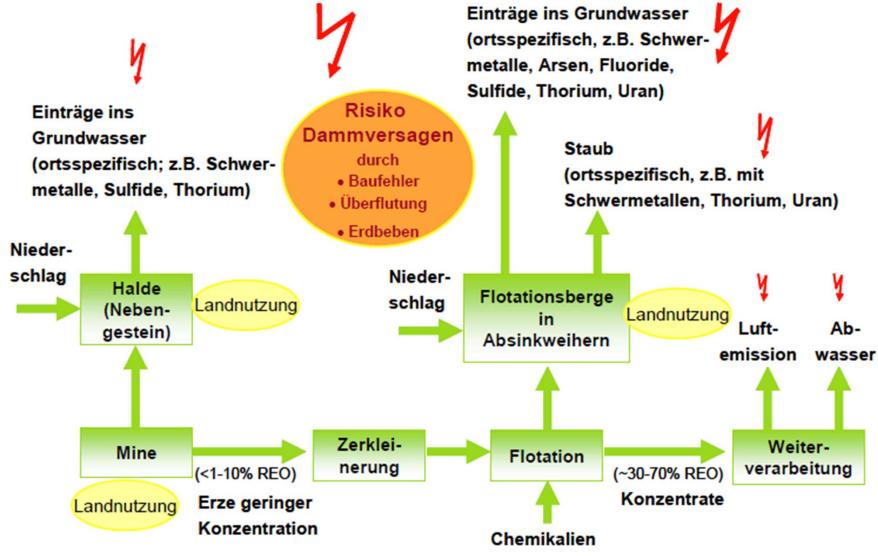
Staat	Tonnen Seltene Erden Oxid (REO)	Anteil
China	120.000	97 %
Indien	2.700	2.1 %
Brasilien	650	0.5 %
Malaysia	380	0.3 %
Kirgistan	k.A.	
Summe	124.000	100 %

^{*}Diese USGS-Daten beinhalten nicht die illegale chinesische Produktion von bis zu 20.000 t und die kleineren russischen Produktionsvolumen.

Quelle: Hintergrundpapier "Seltene Erden" Öko-Institut Freiburg 2010

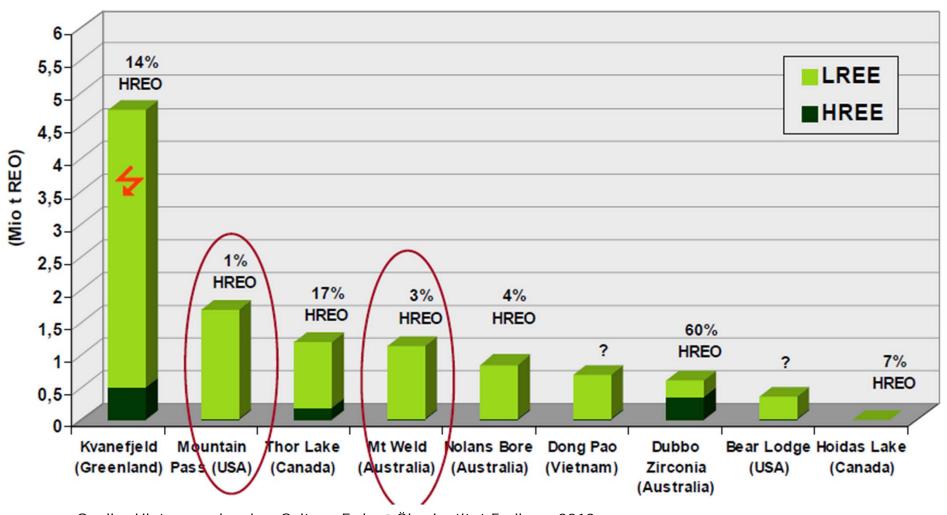
	Importe	Anteil an Importen aus China	Verbindungen, die statistisch erfasst wurden	Quelle
EU 27	23.013 t	90 %	Metalle, Mischungen oder Legierungen von Seltenen Erden, Sc und Y	Eurostat 2010

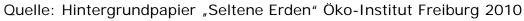
- Die allerersten Prozessstufen bei der Verarbeitung von Seltenen Erden finden heute fast ausschließlich in China und nur sehr eingeschränkt in Japan statt. So ist China das einzige Land, das über die komplette Produktionskette für die Magnetproduktion verfügt, angefangen von der Erzaufbereitung bis hin zur Endproduktherstellung.
- Die USA waren bis Anfang der 1980er der Hauptproduzent von Seltenen Erden. Wegen der niedrigen chinesischen Produktionskosten aber vor allem wegen Umweltproblemen haben jedoch die meisten Abbaufirmen außerhalb Chinas in den vergangenen Jahren die Förderung eingestellt.


Umweltrisiken bei der Gewinnung von Seltenen Erden

- Radioaktive Stoffe, die über Staub und Wasser Mensch und Umwelt schädigen
- Rückstände aus der Erzaufbereitung (Flotationsberge):
 Enthalten radioaktive und toxische Stoffe aus dem Gestein und aus den chemischen Hilfsmitteln
- Ablagerung in künstlichen Teichen
- Kontinuierlicher Grundwassereintrag bei Undichtigkeiten
- Risiko von Dammbrüchen (siehe Rotschlamm in Ungarn)

Umweltrisiken bei der Gewinnung von Seltenen Erden




Quelle: Hintergrundpapier "Seltene Erden" Öko-Institut Freiburg 2010

Seltene Erden – Lagerstätten außerhalb Chinas

Nachricht vom November 2010:

Die grönländische Regierung hat ein Verbot aus den 1980er Jahren gelockert, wonach die Exploration und bergmännische Nutzung von Vorkommen von radioaktiven Mineralien untersagt war. Lars Emil Johansen, ehemaliger grönländischer Ministerpräsident und jetziger Vorsitzender des Aufsichtsrates der in Grönland ansässigen Tochtergesellschaft des australischen Bergbauunternehmens Greenland Minerals & Energy Ltd. (GME), erklärte, dass mit der jüngsten Entscheidung der grönländischen Regierung nunmehr der Weg bereitet werde, Vorkommen von radioaktiven Mineralen wie Uran und Thorium sowie Seltenerdenoxiden zu erkunden.

Quelle: http://www.geopowers.com/energie/groenlaendische-behoerdengenehmigen-kvanefjeld-explorationsprojekt.html

Seltene Erden und Recycling

Seltene Erden werden weltweit nur in sehr geringen Mengen recycelt!

Haupthindernisse waren bisher:

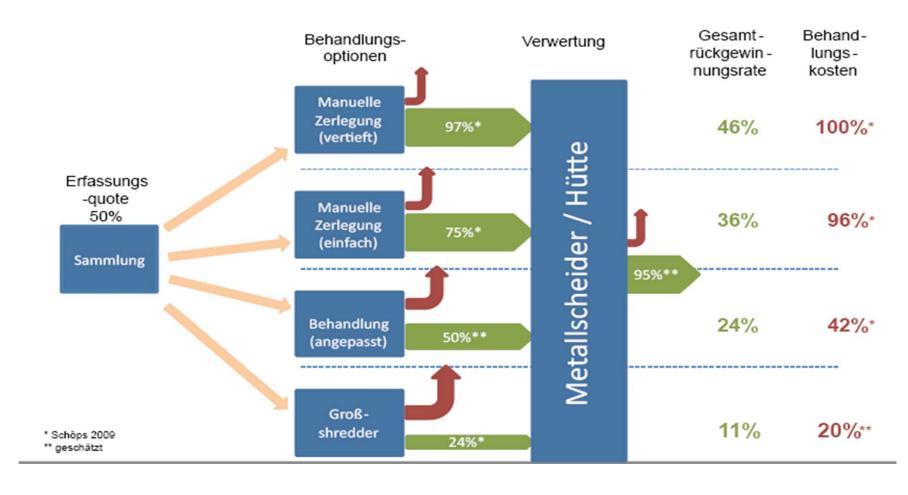
- Niedrige Preise
- Geringe Konzentrationen in vielen Anwendungen und insgesamt kleine Mengen
- Komplexe Chemie; kapitalintensive Anlagetechnik
- Es fehlt Know-how!
- Teilweise aufwändige Demontage nötig.

- Landschaftszerstörung durch Bergbau o. ä. wird derzeit durch Umweltbilanzen nur sehr unzureichend erfasst. Bei der Bilanzierung spielt meist nur der Energieaufwand bei der Gewinnung und die Schadstoff-Freisetzung eine Rolle.
- Der Abbau (Verbrauch) metallischer Rohstoffe ist nicht nachhaltig, da keine Reproduktion möglich ist.
 Wiederverwertung (Recycling) ist aus ökonomischen und ökologischen Gründen notwendig.

 Die gesetzlichen Vorgaben für stoffliches Recycling waren lange Zeit unzureichend. Erst im neuen Kreislaufwirtschaftsgesetz von 2012 hat stoffliches Recycling Vorrang vor thermischen Recycling erhalten.

- Die gesetzlichen Vorgaben für stoffliches Recycling waren lange Zeit unzureichend. Erst im neuen Kreislaufwirtschaftsgesetz von 2012 hat stoffliches Recycling Vorrang vor thermischen Recycling erhalten.
- Recyclinggerechte Konstruktion (VDI-Richtlinie 2243) wurde in der Vergangenheit häufig nicht genügend beachtet.

- Die gesetzlichen Vorgaben für stoffliches Recycling waren lange Zeit unzureichend. Erst im neuen Kreislaufwirtschaftsgesetz von 2012 hat stoffliches Recycling Vorrang vor thermischen Recycling erhalten.
- Recyclinggerechte Konstruktion (VDI-Richtlinie 2243) wurde in der Vergangenheit häufig nicht genügend beachtet.
- Für einige Metalle (z. B. Lithium) gibt es derzeit keine Recyclingtechnologien



- Die gesetzlichen Vorgaben für stoffliches Recycling waren lange Zeit unzureichend. Erst im neuen Kreislaufwirtschaftsgesetz von 2012 hat stoffliches Recycling Vorrang vor thermischen Recycling erhalten.
- Recyclinggerechte Konstruktion (VDI-Richtlinie 2243) wurde in der Vergangenheit häufig nicht genügend beachtet.
- Für einige Metalle (z. B. Lithium) gibt es derzeit keine Recyclingtechnologien
- Der Einsatz geringer Mengen seltener Metalle pro Bauteil erschwert das stoffliche Recycling (Dissipation).
 Entsorgungstechnologien sind dafür nicht ausgelegt.

Rückgewinnung von Gold

Rückgewinnungsraten für Gold bei verschiedenen Behandlungsoptionen (Quelle: Ökopol)

Aufgaben für das Selbststudium

1. Diskutieren Sie die Vor- und Nachteile Seltener Erden! Welche Seite überwiegt und welche Konsequenzen können daraus gezogen werden?

2. Wie sind die Umweltrisiken bei der Gewinnung Seltener Erden zu bewerten?

