UNIVERSITÄT BREMEN

Skripten zur empirischen Wirtschaftsforschung und angewandten Statistik

GRETL-Manual

Eine Einführung in die Ökonometriesoftware gretl

Martin Missong

Sina Wittenberg

Inhaltsverzeichnis

1 Grundlagen

Das Programmpaket *gret1* ist eine freie, plattformunabhängige Statistiksoftware mit dem Schwerpunkt ökonometrische Methoden. *gret1* steht für "Gnu Regression, Econometrics and Time-series Library" und ist unter der Internet-Adresse http://gret1. sourceforge.net/ erhältlich.

Das vorliegende Manual gibt eine kurze Einführung in *gretl.* Dabei wird nicht nach einer strengen Systematik vorgegangen und nicht auf ein vollständiges "Abarbeiten" der Programmfunktionen gezielt. Die vorliegende Dokumentation soll vielmehr eine anschauliche Einführung als Begleitmaterial zum Bachelormodul "Einführung in die Ökonometrie" in den Bachelorstudiengängen der Universität Bremen bieten. Deshalb beschränkt sich die Darstellung zunächst auf die Umsetzung der Beispiele aus dem Vorlesungsskript, und zwar zu den Datensätzen "Konsumfunktion" und "EDP-Daten". Beide Datensätze finden Sie im Excel-Format auf den Stud.IP-Seiten zur Vorlesung. Die "EDP-Daten" sind dem sehr empfehlenswerten Wirtschafts-Lehrbuch "Managerial Economics" von Mark Hirshey und Erik Bentzen (Cengage, 2016, 14. Auflage, S. 185) entnommen.

Ferner beschränkt sich die folgende Darstellung auf eine menüorientierte Steuerung der Bearbeitungsschritte. Im Schlusskapitel gehen wir in Form eines Ausblicks auf die Speicherung des Programmcodes bzw. die Erstellung von Skriptdateien ein und deuten an, wie mit *gretl* Syntax-orientiert gearbeitet werden kann. Damit lassen sich auch komplexere Problemstellungen bearbeiten und *gretl* stellt eine leistungsfähige Alternative zu Programmiersprachen wie R, Octave oder MATLAB dar.

Unter dem Menüpunkt "Hilfe" im *gretl*-Fenster ist u. a. eine ausführliche Bedienungsanleitung für die Software abrufbar. Zusätzlich findet man dort eine reichhaltige Befehlsdokumentation und – für weitergehend Interessierte – ein Handbuch zur Programmiersprache *hansl* ("Hansl's A Neat Scripting Language"), in der *gretl* programmiert ist.

1.1 gretl Oberfläche

🗽 gre	tl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
Keine D	atendatei gela	iden							
ID # ◀	Variablennan	ne 🖣 Bes	chreibung						•
	2 -	fx	3	β 🖩 🗎	3				

1.2 Daten öffnen

Zunächst muss der relevante Datensatz in gretl geöffnet werden.

I C	retl						_		×
<u>D</u> ate	ei <u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
	<u>Ö</u> ffne Daten		1	Benutz	zerdatei	S	trg+0		
	Daten an <u>h</u> änge	:n		🗎 Beispie	eldateien				•
	Daten speicher	n	Stra+S						

Durch einen Klick auf *Datei* \rightarrow *Öffne Daten* \rightarrow *Benutzerdatei* öffnet sich folgendes Menü. Zunächst müssen Ort und Dateityp ausgewählt werden, daraufhin erscheinen alle Dateien des ausgewählten Typs im Auswahlbereich. Die gewünschte Datei kann hier nun ausgewählt und durch einen Klick auf *Öffnen* importiert werden.

Anschließend wird festgelegt, mit welcher Zelle der Tabelle der Import gestartet werden soll. So könnten beispielsweise Erklärungen und überflüssige Überschriften ausgeschlossen werden.

🕅 gretl: TabellenkalkImport 🛛 🗙									
	Starte Import bei:								
Spalte: (A)	: 1 × Z	eile: 1							
	Abbrechen	<u>0</u> K							

Bei der darauffolgenden Frage, ob die Daten als Zeitreihen oder Panel interpretiert werden sollen, ist *Ja* zu wählen,

🌉 gretl: öffne Daten	×
Die importierten Daten wurden als undatiert (Querschnittsdaten). Möchten Sie die Daten Zeitreihen oder Panel interpretieren?	interpretiert als
Ja	<u>N</u> ein

und in den darauf folgenden Abfragen der Zeitreihencharakter mit monatlicher Frequenz anzugeben. Der Startzeitpunkt kann beispielhaft auf 2018:1, also Januar 2018 für die erste Beobachtung gesetzt werden.

Matensatzassistent	×	M Datensatzassistent	×	M Datensatzassistent	×
Struktur des Datensatzes		Zeitreihenfrequenz		Startbeobachtung	
Querschnittsdaten		⊖ Jährlich		Monatlich 2018:01	
Zeitreihe		 Quartalsweise 			
O Panel		Monatlich			
Abbashan		🔿 Wöchentlich			
Abbrechen Vor		🔿 Täglich (5 Tage)			

Daraufhin werden die Variablen des importierten Datensatzes in gretl angezeigt.

🋐 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	6
EDP.xls	x								
ID # ◀	Variablennam	ne 🖣 Bes	chreibung						٠
0	const								
1	Month								
2	Units								
3	Price								
4	AE								
5	PSE								
			U	ndatiert: Volle	r Bereich 1 - 1	2			
	2	fx	X 🖄	β 🖩 🗄	3				

1.3 Daten anzeigen

Durch Auswählen der relevanten Variablen per Mausklick (oder über $Daten \rightarrow Alle$ auswählen) und einen Klick auf $Daten \rightarrow Zeige$ Werte lassen sich die Beobachtungswerte der einzelnen Variablen in anzeigen.

🌉 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
EDP.xls	x	A	les auswäh	len			Strg+A	1	
ID # 🖣	Variablennam	🔍 <u>F</u> ir	nde Variabl	le			Strg+F		•
0	const								
1	Month	De	finiere od	er bearbeite <u>L</u> is	te				
2	Units	<u>S</u> e	tze Auswa	hl durch Liste					
3	Price	Ze	ige Werte						
4	AE	Be	arbeite We	erte					
5	PSE	Be	obachtun	gen <u>h</u> inzufüger	n				

Ein neues Fenster öffnet sich, die Werte sind tabellarisch dargestellt.

🛐 gretl: zeig	ge Daten				- 🗆	×
7 8 6	© ♦3					8
	Month	Units	Price	AE	PSE	
2018:01	Januar	2500	3800	26800	43000	
2018:02	Februar	2250	3700	23500	39000	
2018:03	März	1750	3600	17400	35000	
2018:04	April	1500	3500	15300	34000	
2018:05	Mai	1000	3200	10400	26000	
2018:06	Juni	2500	3200	18400	41000	
2018:07	Juli	2750	3200	28200	40000	
2018:08	August	1750	3000	17400	33000	
2018:09	September	1250	2900	12300	26000	
2018:10	Oktober	3000	2700	29800	45000	
2018:11	November	2000	2700	20300	32000	
2018:12	Dezember	2000	2600	19800	34000	

Mit Units ist der Absatz des Unternehmens Electronic Data Processing (EDP) in Stück bezeichnet, während Price den Produktpreis in US-\$ angibt. AE bezeichnet die Werbeausgaben (advertising expenditures) und PSE die Vertiebsausgaben (personal selling expenditures), beide werden in US-\$ gemessen.

1.4 Grafische Darstellungen der Daten

Über Ansicht \rightarrow Plotte spezifizierte Variablen lassen sich ausgewählte Datenreihen grafisch darstellen.Beispielhaft werden hier Boxplots, Zeitreihen und Streuungsdiagramme vorgestellt.

1.4.1 Boxplots

Markiert man zunächst alle Variablen des Datensatzes über $Daten \rightarrow Alle \ auswählen$ und lässt unter $Ansicht \rightarrow Plotte \ spezifizierte \ Variablen \rightarrow Boxplots$ im folgenden Abfragefenster die Variablenauswahl unverändert, so erhält man die folgende Grafik:

Es wird zum einen deutlich, dass *gretl* die Monatsnamen mit den Zahlen 1 bis 12 codiert hat; so kommt für die Reihe Month ein Boxplot zustande, der aber nicht sinnvoll interpretierbar ist. Zum anderen lässt die Darstellung einen Vergleich von Werbeausgaben AE und Vertriebsausgaben PSE zu: Beide Verteilungen sind linkssteil und besitzen eine vergleichbare Streuung, die Vertriebsausgaben liegen jedoch deutlich über den Werbeausgaben.

Will man lediglich diese beiden Verteilungen vergleichen, so ist der Plot-Befehl erneut aufzurufen und im Dialogfenster können die übrigen Variablen entfernt werden:

🕅 gretl: Definiere Graphen	l.		×				
Wähle zu plottende Variablen							
Month Units Price AE PSE		AE PSE					
Zeige Intervall für Media	in						
<u>H</u> ilfe <u>L</u> e	eren <u>A</u> b	brechen	<u>О</u> К				

1.4.2 Zeitreihen

Ansicht \rightarrow Plotte spezifizierte Variablen \rightarrow Zeitreihengraph liefert die Zeitreihendarstellung des Datensatzes (die Variable "Monate" wurde im Dialogfenster ausgeschlossen):

Die gleichgerichteten Änderungen von AE und PSE lassen bereits erahnen, dass es schwierig wird, mit Hilfe eines Linearen Modells die Einflüsse von AE und PSE auf den Absatz zu trennen, hier besteht deutliche (Multi-)Kollinearität.

1.4.3 Streuungsdiagramme

Über Ansicht \rightarrow Plotte spezifizierte Variablen \rightarrow X-Y-Streudiagramm lassen sich in gretl außerdem Streuungsdiagramme erstellen.

🌉 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
EDP.xlsx			<u>S</u> ym	bolansicht		H			
ID # Variablenname Bes		Plotte spezifizierte Variablen			•	Zeitreihengraph			
1	Month		<u>M</u> eh	rfache Grapher	n	•	X-Y- <u>S</u> tre	eudiagramn	n
2 Units Grundlegende Statistiken				stiken		Streudia	ig. mit <u>L</u> inie	:n	
3 Price			<u>K</u> orrelationsmatrix				Streudia	Streudiag. mit <u>Faktorseparie</u>	
4	AE		Kreu	z <u>t</u> abelle			Pevelet	ig. mit <u>K</u> ont	ronvariac
5	PSE		Hau	otkomponente	n		Doxplot	5	

Im darauffolgenden Fenster können X- und Y-Achsen-Variable festgelegt werden. Dazu wird die entsprechende Variable im linken Bereich ausgewählt und mit dem blauen bzw. grünen Pfeil in das entsprechende Feld verschoben. Hier sollen beispielhaft die Vertriebsausgaben (PSE) auf der X-Achse und die Einheiten (Units) auf der Y-Achse aufgetragen werden. Die fertige Auswahl wird mit *OK* bestätigt.

🛐 gretl: Definiere Graphe	n	_		\times
x	Y-Streudiagram	m		
Month]	X-Ach	sen-Varia	ble
Units		PSE		
Price AE		Y-Achs	en-Variał	olen
PSE		Units		
	4			
<u>H</u> ilfe <u>L</u> ee	ren <u>A</u> bl	brechen	<u>0</u>	K

Das Streudiagramm öffnet sich in einem neuen Fenster. Bei einem ausreichend großen Korrelationskoeffizienten wird automatisch die ausgleichende Regressionsgerade eingezeichnet. Die zugehörige Gleichung wird oben rechts in der Grafik angezeigt. Ein ausgeprägter, positiver linearer Zusammenhang zwischen den Vertriebsausgaben und den verkauften Einheiten wird deutlich.

Im *Graph*-Fenster lässt sich mit einem Klick auf *arbeiten* öffnet sich ein neues Fenster mit vielen Einstellungsmöglichkeiten für das Diagramm. Hier lässt sich beispielsweise die angepasste Kurve (Regressionsgerade) entfernen oder, sofern sie nicht automatisch eingezeichnet wurde, hinzufügen.

🕅 gretl-Graphbefehle X								
Allg.	X-Achse	Y-Ach	nse Linien Bezeichnungen Pfeile Palette					
Titel des Graphs s gegen Price (mit Kleinstquadrate-Anpassung)								
Sch	lüsselposi	tion	Keine			\sim		
ang	jepasste K	urve	inear: y = a	a + b*x		\sim		
∠ 2	Zeige volle	n Rahı	Keine					
	Zeige Gitte	rnetz	linear: y =	a + b*x				
			quadratise	h: y = a + b*x + c'	'x^2	-		
			kubisch: y	= a + b*x + c*x^2	+ d*x^	3		
ة <u>ا</u>	als Voreins	tellung	invers: y =	a + b*(1/x)				
	Loess (lokal gewichtete Anpassung)							
	semilog: log y = a + b*x							
]	<u>H</u> ilfe		linear-log: An <u>w</u> ender	y = a + b*log(x)		o <u>c</u> niieisen		

1.5 Deskriptive Statistiken

Über Ansicht \rightarrow Grundlegende Statistiken lassen sich deskriptive Statistiken zu ausgewählten Variablen anzeigen.

🕅 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge [Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
EDP.xls	x		<u>S</u> ymł	olansicht					
ID # 🖣	Variablenname	 Bes 	Diett	o concrificiente V	/ariablen	•			•
0	const		Pioto	e spezifizierte v facha Granbar	anabien				
1	Month		<u>Ivi</u> eni	Tache Grapher	1				
2	Units		Grun	dlegende <u>S</u> tati	stiken				
3	Price		Korre	lationsmatrix					
4	AE		Kreuz	Kreuz <u>t</u> abelle					
5	PSF		Haup	tkomponente	n				

Wieder müssen zunächst die Variablen ausgewählt werden, für die deskriptive Statistiken angezeigt werden sollen.

🛐 gretl: Grundlegende Sta	🕅 gretl: Grundlegende Statistiken							
Gru	Grundlegende Statistiken							
Month Units Price AE PSE		Units Price AE PSE						
Ŀ	eeren <u>A</u> b	brechen	<u>O</u> K					

Anschließend kann gewählt werden, ob nur grundlegende Statistiken (*Show main statistics*) oder alle Statistiken (*Show full statistics*) angezeigt werden sollen. Häufig sind die grundlegenden Statistiken im Rahmen einer ersten Datenanalyse ausreichend.

🛐 gretl	×					
Show main statistics						
○ Show full statistics						
<u>A</u> bbrechen <u>O</u> K						

Die Statistiken öffnen sich in einem neuen Fenster.

🎉 gretl: Grur	ndlegende Statistiken				- 🗆	\times
240	© ™X					8
	arith. Mittel	Median	S.D.	Min	Max	
Units	2021	2000	607,3	1000	3000	
Price	3175	3200	409,3	2600	3800	
AE	19967	19100	6116	10400	29800	
PSE	35667	34500	6125	26000	45000	

Über Ansicht \rightarrow Korrelationsmatrix lassen sich aus dem Hauptfenster heraus außerdem die paarweisen Korrelationen aller oder ausgewählter Variablen anzeigen.

📓 gretl: Korrelationsmatrix	(_		Х
🖥 占 🕞 🔍 🕸 🔀					6
Korrelationskoeffi 5% kritischer Wert	zienten, benut (zweiseitig)	ze die Beobach = 0,5760 für n	tungen 1 - 1 = 12	12	
Units	Price	AE	PSE		
1,0000	-0,0160	0,9412	0,9368	Units	
	1,0000	0,0461	0,2502	Price	
		1,0000	0,8808	AE	
			1,0000	PSE	

2 Das Lineare Modell mit einem Regressor

2.1 Neuen Datensatz laden

Als Einstieg in das Arbeiten mit dem linearen Modell in *gretl* soll zunächst das Lineare Modell mit einem Regressor am Beispiel der Konsumfunktion gezeigt werden. Anschließend wird das multiple Modell anhand des EDP-Beispiels untersucht.

Um die Konsumfunktionsdaten zu laden können Sie entweder eine neue gretl-Sitzung starten oder den Datensatz schließen. Im ersten Fall werden Sie nach Aufrufen von $Datei \rightarrow Beenden$ gefragt, ob die Befehle gespeichert werden sollen. Diese Möglichkeit wird ausführlich im Schlussabschnitt ?? thematisiert.

1	gretl					_		×
<u>D</u> at	ei <u>W</u> erkzeuge D	ate <u>n A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	8
-	<u>Ö</u> ffne Daten Daten an <u>h</u> ängen Daten <u>s</u> peichern Daten speichern <u>a</u> l Daten e <u>x</u> portieren.	► Strg+S 						•
	Senden an <u>N</u> euer Datensatz Schließe Datensatz	Strg+N						
	<u>A</u> rbeitsverzeichnis S <u>k</u> riptdateien Sit <u>z</u> ungsdateien Daten <u>b</u> anken	•••	-					
-	<u>B</u> eenden	Strg+Q						
	2 🕅 🎹 .	Monatlie fx 💢 🖄	ch: Voller Be β 🏨 🖡	reich 2018:01 -	2018:12			

An dieser Stelle soll nein gewählt und eine neue Sitzung gestartet werden, in der unter

 $Datei \rightarrow \ddot{O}$ ffne $Daten \rightarrow Benutzerdatei...$ die Datei konsumfunktion.xlsx zu laden ist. In diesem Fall handelt es sich um Querschnittsdaten, weshalb bei der Frage nach Zeitreihen- oder Paneldaten *nein* gewählt werden kann.

Alternativ kann auch unter $Datei \rightarrow Schließe Datensatz$ der Datensatz geschlossen und der Hinweis, dass dies die Sitzung beendet, bestätigt werden:

1	gretl						_		×
<u>D</u> at	ei <u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
	<u>Ö</u> ffne Daten Daten an <u>h</u> änger Daten <u>s</u> peichern Daten speichern Daten e <u>x</u> portiere	n <u>a</u> ls	Strg+S						•
	Senden an Neuer Datensatz Schließe Datens	: atz	Strg+N						
	<u>A</u> rbeitsverzeichr S <u>k</u> riptdateien Sit <u>z</u> ungsdateien Daten <u>b</u> anken	nis)						
4	<u>B</u> eenden		Strg+Q						
	P- 100	fx	Monatli	ch: Voller Bere β 🏦 📄	ich 2018:01 - 3	2018:12			

🕅 gretl	×
Schließen des Daten die laufende Sitzung	satzes beendet 1. Sicher?
<u>J</u> a	<u>N</u> ein

Nun kann über $Datei \rightarrow \ddot{O}$ ffne $Daten \rightarrow Benutzerdatei...$ die Datei konsumfunktion.xlsx geladen werden.

Der Datensatz enthält für 10 Haushalte Daten zum monatlichen Einkommen und zum monatlichen Konsum, jeweils gemessen in Euro.

2.2 Modell schätzen

Nachdem die Daten geladen sind, lässt sich das Lineare Modell der Form

$$Konsum_i = \beta_0 + \beta_1 Einkommen_i + u_i$$

über *Modell* \rightarrow *Kleinste Quadrate (OLS)* mit der KQ-Methode schätzen.

Dazu müssen zunächst die abhängige Variable (Y) und die unabhängige Variable (X) festgelegt werden. In diesem Beispiel sollen die Konsumausgaben als abhängige Variable durch das Einkommen als Regressor bzw. unabhängige Variable erklärt werden.

🎆 gretl: Modell spezifizier	_		\times			
4	KQ					
const		Abhäng	ige Varia	ble		
Einkommen		Konsumausgaben				
Konsumausgaben		🗹 als Vore	instellun	g		
		Reg	ressoren			
	➡	const Einkomme	en.			
Robuste Standardfehler HC1						
<u>H</u> ilfe <u>L</u> eer	en <u>A</u> b	brechen	<u>0</u>	K		

Es ergibt sich folgender Regressionsoutput. Hier sind die Schätzkoeffizienten für den Einfluss der unabhängigen Variable und das Absolutglied sowie deren Standardfehler, empirische t-Werte und p-Werte zu sehen. Zudem finden sich modellbezogene Größen wie das Bestimmtheitsmaß R^2 und die Summe der quadrierten Residuen (RSS).

🕅 gretl: Modell 1							_		\times
<u>D</u> atei <u>B</u> earbeiten	<u>T</u> ests	<u>S</u> peichern	<u>G</u> raphen	<u>A</u> nalyse	<u>L</u> aTeX				6
Modell 1: KQ, Abhängige Vari	benut: Lable:	ze die B Konsuma	eobacht usgaben	ungen 1	-10				
	Koeff:	izient	Stdf	ehler	t-Quotient	p-We	ert		
const	-103,	920	381,23	1	-0,2726	0,79	921		
Einkommen	٥,	740740	0,16	3613	4,527	0,00	019	***	
Mittel d. abh.	Var.	150	4,300	Stdabw	. d. abh. Va	r.	778	,8235	j i
Summe d. quad.	. Res.	15	32520	Stdfeh	ler d. Regre	ss.	437	,6815)
R-Quadrat		0,7	19272	Korrig	iertes R-Qua	drat	0,6	84181	,
F(1, 8)		20,	49734	P-Wert	(F)		0,0	01931	
Log-Likelihood	1	-73,	88858	Akaike	-Kriterium		151	,7772	
Schwarz-Kriter	cium	152	,3823	Hannan	-Quinn-Krite	rium	151	,1133	J

2.3 Konfidenzintervalle

Nach der Schätzung des Linearen Modells können aus dem Output-Fenster über Analyse \rightarrow Konfidenzintervalle für Koeffizienten Konfidenzintervalle berechnet werden.

🙀 gretl: Modell 1	- 🗆 X	
<u>D</u> atei <u>B</u> earbeiten <u>T</u> ests <u>S</u> peichern <u>G</u> raph	en Analyse LaTeX	3
Modell 1: KQ, benutze die Beobad Abhängige Variable: Konsumausgab	cht Zeige tatsächliche, geschätzte, Residuen	
Koeffizient Std.	-f Konfidenzintervalle für Koeffizienten Konfidenz <u>e</u> llipse	
const -103,920 381, Einkommen 0,740740 0,	Kovarianzmatrix der Koeffizienten 16 Kollinearität	
Mittel d. abh. Var. 1504,300 Summe d. quad. Res. 1532520 R-Ouadrat 0.719272	<u>Einflussreiche Beobachtungen</u> <u>A</u> NOVA <u>B</u> ootstrap	
F(1, 8) 20,49734 Log-Likelihood -73,88856 Schwarz-Kriterium 152,3823	P-Wert(F) 0,001931 Akaike-Kriterium 151,7772 Hannan-Quinn-Kriterium 151,1133	

Daraufhin öffnet sich das Output Fenster mit den oberen und unteren Grenzen der Konfidenzintervalle für alle Schätzkoeffizienten. Über $\overset{\alpha}{\frown}$ lässt sich das Konfidenzniveau anpassen.

📓 gretl: Konfidenzintervalle der Koeffizienten – 🗆 >							
ΖΔ 🖟 🔍 α 🖪	x				6		
t(8, 0, 025) = 2,30	06						
VARIABLE	KOEFFIZIENT	95% KONFIDENZ-I	NTERVAL	L			
const	-103,920	-983,041	775,	201			
Einkommen	0,740740	0,363448	1,11	803			

2.4 KQ-Prognose

Auf Grundlage des geschätzten Modells können die Konsumausgaben für weitere, über die Beobachtungen hinausgehende Einkommenswerte prognostiziert werden. Zunächst muss dafür im Hauptfenster die unabhängige Variable ausgewählt werden, in diesem Fall das Einkommen. Über *Daten* \rightarrow *Bearbeite Werte* können dann die zusätzlichen Einkommenswerte eingetragen werden.

🎊 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
Konsur	mfunktion.xlsx	A	les auswäh	len			Strg+A	1	
ID # 🖣	Variablennam	🔍 <u>F</u> ir	nde Variab	le			Strg+F		•
0	const						-		
1	Einkommen	De	finiere od	er bearbeite <u>L</u> is	te				
2	Konsumausg	<u>S</u> e	tze Auswa	hl durch Liste					
		<u>Z</u> e	ige Werte						
		<u>B</u> e	arbeite We	erte					
		Be	obachtun	gen <u>h</u> inzufüger	n				

Es öffnet sich ein neues Fenster in dem die einzelnen Werte bearbeitet werden können. Neue Beobachtungen lassen sich über $\clubsuit \to F$ üge Beobachtungen hinzu eintragen.

Im nächsten Fenster muss die Zahl der hinzuzufügenden Beobachtungen ausgewählt werden.

🗱 Beobachtungen hinzufügen							
Zahl der hinzuzufügen	2	▲ ▼					
	Abbrechen		<u>0</u> K				

Es erscheinen zwei neue freie Felder, in die neue Werte eingetragen werden können. In diesem Beispiel sollen die Konsumausgaben für ein monatliches Einkommen von 2171 Euro bzw. 3000 Euro prognostiziert werden (vgl. die zugehörige Aufgabe im Skript

zur "Einführung in die Ökonometrie"). Über < wird die Eingabe gespeichert.

🎆 gretl: Dat	en b	—		\times
🕂 🇹 🖡	inkomr	men, 12	2	•
		Eink	ommen	
1				892
2				2533
3				1860
4				3721
5				1966
6				1036
7				3022
8				2317
9				1544
10				2820
11				2171
12				3000
	1			

Anschließend muss das Lineare Modell wie in Abschnitt ?? erneut geschätzt werden. Im Fenster mit dem Regressionsoutput kann über *Analyse* \rightarrow *Prognosen* das Prognosen semenü aufgerufen werden.

🕅 gretl: Modell 4	- 🗆 X
<u>D</u> atei <u>B</u> earbeiten <u>T</u> ests <u>S</u> peichern <u>G</u> raphen <u>A</u> nalyse <u>L</u> a	aTeX 🗎
Modell 4: KQ, benutze die Beobacht Zeigeta	tsächliche, geschätzte, Residuen
Abhängige Variable: Konsumausgaben Prognos	en
<u>K</u> onfider	nzintervalle für Koeffizienten

Für die graphische Darstellung ist es empfehlenswert, den *Prognosezeitraum* über alle Beobachtungen zu strecken und im Feld *Zeige Intervall für* die Option *mittleres* Y auszuwählen. Unter $1 - \alpha$ lässt sich das Konfidenzniveau festlegen, hier soll ein 90%-Prognoseintervall berechnet werden.

🕅 gretl: Prognose	\times							
Prognosezeitraum: Start Ende								
 automatische Prognose (dynamisch out-of-sample) 								
O dynamische Prognose								
Intersection of the section of th								
🔿 rollierende k-Schritt-Prognosen: k = 1								
Zu plottende Beobachtungen vor Prognosezeitraum 0	* *							
Zeige geschätzte Werte für Bereich vor Prognose								
Plotte Konfidenzintervall mit Tief-Hoch-Linien 🗸								
1 - α = 0,90 😴								
Zeige Intervall für 🛛 mittleres Y 🔍								
<u>H</u> ilfe <u>A</u> bbrechen <u>O</u> K								

Es öffnen sich zwei neue Fenster. Das erste Fenster enthält die Prognosen, dazugehörige Standardfehler und Konfidenzintervalle.

🧏 g	retl: Prognosen			-	- 🗆	×
	≜ © < ™ +					6
Für	90%-Konfidenzinte	rvalle, t(8,	0,05) = 1,860			^
	Konsumausgaben	Prognose	Stdfehler	90%-In	tervall	
1	239,00	556,82	250,905	90,25 -	1023,39	
2	1227,00	1772,37	150,541	1492,44 -	2052,31	
3	1365,00	1273,86	147,470	999,63 -	1548,08	
4	2389,00	2652,37	288,896	2115,16 -	3189,59	
5	730,00	1352,37	142,417	1087,54 -	1617,21	
6	849,00	663,49	231,619	232,78 -	1094,19	
7	2679,00	2134,60	196,311	1769,54 -	2499,65	
8	1918,00	1612,37	140,450	1351,20 -	1873,55	
9	1511,00	1039,78	172,289	719,40 -	1360,16	
10	2136,00	1984,97	174,437	1660,59 -	2309,34	
11		1504,23	138,407	1246,85 -	1761,60	
12		2118,30	193,775	1757,96 -	2478,63	
						\sim

Das zweite Fenster zeigt die Regressionsgerade, beobachtete Werte und den Prognosetrichter.

2.5 t-Test

Neben Konfidenzintervallen und Prognosen spielen besonders Hypothesentests eine wichtige Rolle in der Arbeit mit dem Linearen Modell. Mit einem t-Test lässt sich beispielsweise überprüfen ob β_1 , die marginale Konsumquote, den Wert 0,8 unterschreitet. Im Skript findet sich dazu die Aufforderung, auf Basis der Modellschätzung H_0 : $\beta_1 \geq 0,8$ gegen H_1 : $\beta_1 < 0,8$ mit $\alpha = 0,05$ zu überprüfen. Leider kann dieser Test nicht unmittelbar in gret/ durchgeführt werden. Stattdessen muss der Wert der Teststatistik zunächst wie gewohnt berechnet werden. Er beträgt $t = (\hat{\beta}_1 - 0, 8)/\hat{\sigma}_{\hat{\beta}_1} = (0,741 - 0,8)/0,164 = -0,362$. Der kritische Wert k kann nun über das pyqrs-Programm oder in gret/ über Werkzeuge \rightarrow Statistische Tabellen bestimmt werden.

🕅 gret	tl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
Konsun	<u>S</u> tatistisc	he Tabe	llen						
ID # 🖣	<u>P</u> -Wert-	Finder							•
0	<u>V</u> erteilur	ngsgraph	en						
1	<u>P</u> lotte ei	ne Kurve							
2	<u>T</u> eststati	stik-Recl	hner						

Dazu wird die t-Verteilung ausgewählt und die Anzahl der Freiheitsgrade sowie die rechtsseitige Wahrscheinlichkeit eingetragen.

🛐 gretl:	ische Werte		—		×			
Normal	t	chi-Quadrat	F	bin	omial	Poisson	Weibull	DW
rechtss	eitig	ge Wahrscheir	lich	FG keit	8 0,05			
					S <u>c</u> hli	eßen	<u>O</u> K	:

Der kritische Wert k = 1,86 wird ausgegeben. Ein Vergleich mit dem empirischen t-Wert t = -0,362 ergibt |t| < k. Die Nullhypothese kann nicht verworfen werden, die marginale Konsumquote ist nicht signifikant kleiner als 0,8.

gretl: kritische Werte	_		\times
6 4 6 9			6
t(8) rechtsseitige Wahrscheinlichke komplementäre Wahrscheinlichke zweiseitige Wahrscheinlichkeit Kritischer Wert = 1,85955	eit eit	= 0,05 = 0,95 0,1	

Zusätzlich kann auch das marginale Signifikanzniveau p über $Werkzeuge \rightarrow P-Wert$ -Finder bestimmt werden (wiederum als Alternative zur Verwendung des pygrs-Programms).

🕅 gre	tl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	6
Konsun	<u>S</u> tatistiso	he Tabe	llen	1					
ID # 🖣	P-Wert-	Finder							•
0	<u>V</u> erteilur	ngsgraph	ien						
1	<u>P</u> lotte ei	ne Kurve							
2	<u>T</u> eststati	stik-Rech	hner						

Dafür wird zunächst wieder die t-Verteilung gewählt und die Freiheitsgrade sowie der empirische t-Wert eingetragen.

🛐 gretl:	p-V	Vert-Finder	_		×					
Normal	t	chi-Quadrat	hi-Quadrat F Gamma binomial Poisson Weibe							
		FG 8 Wert -0,	362							
				S	<u>c</u> hließen		<u>о</u> к			

Da der beschriebene Test linksseitig ist, ist der Wert *nach links* der richtige. Der p-Wert beträgt p = 0,363, d. h. der beobachtete t-Wert (bzw. die beobachtete Abweichung des Schätzwerts $\hat{\beta}_1 = 0,741$ vom hypothetischen Wert 0,8) ist nicht außergewöhnlich: Wäre $\beta_1 = 0,8$, so würde man den beobachteten t-Wert oder eine noch deutlich negativere Teststatistik mit einer Wahrscheinlichkeit von 36,3% beobachten. Die Daten sprechen also nicht offensichtlich gegen die Annahme, die marginale Konsumquote sei 0,8. Eine ausführliche Darstellung dieses t-Tests findet sich im Vorlesungsskript zur "Einführung in die Ökonometrie".

Das Vorgehen zum t-Test erscheint recht umständlich. In Abschnitt ?? wird jedoch gezeigt, wie sich mit Hilfe des F-Tests indirekt auch ein einseitiger t-Test durchführen lässt.

3 Das multiple Lineare Modell

In diesem Abschnitt wird das Vorgehen aus Abschnitt ?? erweitert und auf das multiple Modell übertragen. Außerdem werden weitere Funktionen von *gretl* vorgestellt. Grundlage sind wieder die Daten des EDP-Beispiels, die gemäß den in Abschnitt ?? vorgestellten Optionen zunächst geladen werden müssen.

3.1 Modell schätzen

Uber *Modell* \rightarrow *Kleinste Quadrate (OLS)* lässt sich auch das multiple Lineare Modell mit der KQ-Methode schätzen.

 Image: Second second

Dazu müssen, im Gegensatz zum Linearen Modell mit einem Regressor, neben der abhängigen Variable mehrere unabhängige Variablen festgelegt werden. In diesem Fall ist die Zahl der verkauften Einheiten Units die abhängige Variable, die durch den Preis Price, Werbeausgaben AE und Vertriebsausgaben PSE erklärt werden.

Das Lineare Modell lautet also

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \beta_3 x_{3,t} + u_t$$

mit $y_t = Units_t$, $x_{1,t} = Price_t$, $x_{2,t} = AE_t$, $x_{1,t} = PSE_t$, und u_t als Störgröße.

In der gretl-Notation bedeutet dies

$$Units_t = const + \beta_{Price} Price_t + \beta_{AE} AE_t + \beta_{PSE} PSE_t + u_t$$

bzw.

$$Units_t = \beta_{[1]} + \beta_{[2]}Price_t + \beta_{[3]}AE_t + \beta_{[4]}PSE_t + u_t$$

Beachten Sie, dass die Nummerierung der Koeffizienten in *gret1* mit dem Startwert [1] für das Absolutglied beginnt, es gilt also in Bezug zur "konventionellen" Notation: $\beta_0 = \beta_{[1]}, \ \beta_1 = \beta_{[2]}$ etc.!

📓 gretl: Modell spezifizier	_		\times		
÷	KQ				
const Month Units Price AE PSE		Abhäng Units I als Vore Reg Const Price AE PSE	gige Varia einstellun gressoren	ig	
Robuste Standardfehler HC1 Hilfe Leeren Abbrechen OK					

Im Regressionsoutput werden wieder die Schätzkoeffizienten der einzelnen Variablen, deren Standardfehler, empirische t-Werte und p-Werte angegeben. Weiterhin finden sich modellbezogene Größen wie das Bestimmtheitsmaß R^2 , die Summe der quadrierten Residuen (RSS) und der F-Wert des "Test of overall significance". (Das ist ein F-Test der Hypothese, dass alle Steigungskoeffizienten des Modells null sind: $H_0: \beta_{Price} = \beta_{AE} = \beta_{PSE} = 0$. Der F-Test wird im folgenden Abschnitt ?? beschrieben.)

🕅 gretl: Mode	ll 1			_		
<u>D</u> atei <u>B</u> earbe	iten <u>T</u> ests <u>S</u> peichern	<u>G</u> raphen <u>A</u> nalyse	<u>L</u> aTeX		e	1
Modell 1: Abhängige	KQ, benutze die E Variable: Units	Beobachtungen 1	1-12			
	Koeffizient	Stdfehler	t-Quotient	p-Wert		
const	-117,513	333,526	-0,3523	0,7337		
Price	-0,296478	0,101950	-2,908	0,0196	k ik	
AE	0,0359758	0,0139494	2,579	0,0327	k ik	
PSE	0,0662060	0,0143722	4,607	0,0017	***	
Mittel d.	abh. Var. 202	0.833 Stdab	w. d. abh. Va	r. 607,	3259	
Summe d. q	uad. Res. 122	854,1 Stdfel	hler d. Regrea	ss. 123,	9224	
R-Quadrat	0,9	69720 Korrig	giertes R-Qua	drat 0,95	58365	
F(3, 8)	85,	40075 P-Wert	t (F)	2,04	4e-06	
Log-Likeli	hood -72,	43034 Akaike	e-Kriterium	152,	8607	
Schwarz-Kr	iterium 154	,8003 Hannar	n-Quinn-Krite	rium 152,	,1426	

Wie oben am Beispiel des Konsummodells beschrieben lassen sich nun über Analyse \rightarrow Konfidenzintervalle für Koeffizienten Konfidenzintervalle berechnen:

DateiBearbeitenTestsSpeichernGraphenAnalyseLaTeXModell 1:KQ, benutze die BeobachtZeige tatsächliche, geschätzte, ResiduenAbhängige Variable:UnitsKoeffizientStdfKoeffizientStdfConst-117,5130.03597580,01AE0,03597580.06620600,01Mittel d. abh.Var.2020,833Summe d. quad.Res.122854,1R-Quadrat0,969720F(3, 8)85,40075Log-Likelihood-72,43034	🕅 gretl: Modell 1		- 0	×
Modell 1: KQ, benutze die Beobacht Abhängige Variable: UnitsZeige tatsächliche, geschätzte, Residuen PrognosenKoeffizientStdfKoeffizientStdfconst-117,513const-117,513Price-0,2964780,03597580,01AE0,0359758PSE0,06620600,06620600,01Mittel d. abh. Var.2020,833Summe d. quad. Res.122854,1R-Quadrat0,969720F(3, 8)85,40075F(3, 8)85,40075Log-Likelihood-72,43034Akaike-Kriterium152,8607	<u>D</u> atei <u>B</u> earbeiten <u>T</u> ests	<u>S</u> peichern <u>G</u> raphen	<u>A</u> nalyse <u>L</u> aTeX	9
KoeffizientStdfconst-117,513333,52Price-0,2964780,10AE0,03597580,01PSE0,06620600,01Mittel d. abh. Var.2020,833Summe d. quad. Res.122854,1R-Quadrat0,969720F(3, 8)85,40075Log-Likelihood-72,43034	Modell 1: KQ, benut: Abhängige Variable:	ze die Beobach Units	<u>Z</u> eige tatsächliche, geschätzte, Residuen <u>P</u> rognosen	
const -117,513 333,52 Price -0,296478 0,10 AE 0,0359758 0,01 PSE 0,0662060 0,01 Mittel d. abh. Var. 2020,833 Summe d. quad. Res. 122854,1 R-Quadrat 0,969720 F(3, 8) 85,40075 Log-Likelihood -72,43034	Koeffi:	zient Std	<u>K</u> onfidenzintervalle für Koeffizienten Konfidenz <u>e</u> llipse	
AE 0,0359758 0,01 PSE 0,0662060 0,01 Mittel d. abh. Var. 2020,833 Summe d. quad. Res. 122854,1 R-Quadrat 0,969720 F(3, 8) 85,40075 Log-Likelihood -72,43034	const -117,55 Price -0,25	13 333,52 96478 0,10	2 Kovarianz <u>m</u> atrix der Koeffizienten 0 <u>K</u> ollinearität	
Bootstrap Bootstrap Summe d. quad. Res. 122854,1 R-Quadrat 0,969720 F(3, 8) 85,40075 Log-Likelihood -72,43034	AE 0,03 PSE 0,00	359758 0,03 662060 0,03	Einflussreiche Beobachtungen <u>A</u> NOVA	
Summe d. quad. Res. 122854,1 Stdfehler d. Regress. 123,9224 R-Quadrat 0,969720 Korrigiertes R-Quadrat 0,958365 F(3, 8) 85,40075 P-Wert(F) 2,04e-06 Log-Likelihood -72,43034 Akaike-Kriterium 152,8607	Mittel d. abh. Var.	2020,833	Bootstrap	
Log-Likelihood -72,43034 Akaike-Kriterium 152,8607	Summe d. quad. Res. R-Quadrat	122854,1 0,969720 85 40075	Stdfehler d. Regress. 123,9224 Korrigiertes R-Quadrat 0,958365 R-Wert(E) 2.04e-06	
Schwarz-Kriterium 154,8003 Hannan-Quinn-Kriterium 152,1426	Log-Likelihood Schwarz-Kriterium	-72,43034 154,8003	Akaike-Kriterium152,8607Hannan-Quinn-Kriterium152,1426	

📓 gretl: Konfidenzintervalle der Koeffizienten – 🗆 🗙						
	s					
t(8, 0, 025) = 2,30	6					
VARIABLE	KOEFFIZIENT	95% KONFIDENZ-	INTERV	ALL		
const Price AE PSE	-117,513 -0,296478 0,0359758 0,0662060	-886,626 -0,531575 0,00380837 0,0330635	65 -0,06 0,06	51,599 513806 581433 993484		
		untere Grenze	ober	e Grenze		

3.2 F-Test

📓 gretl: Modell 3			_		×
<u>D</u> atei <u>B</u> earbeiten	<u>Tests</u> <u>Speichern</u> <u>G</u> raphen <u>A</u> nalyse	<u>L</u> aTeX			6
Modell 3: KQ, Abhängige Var	Variablen <u>w</u> eglassen Variablen <u>h</u> inzufügen <u>S</u> umme der Koeffizienten	-12 t-Quotient	p-Wert		
 const Price AE PSE	Nichtlinearität (<u>Q</u> uadrate) Nichtlinearität (<u>L</u> ogs) Ramseys <u>R</u> ESET	-0,3523 -2,908 2,579 4,607	0,7337 0,0196 0,0327 0,0017	* * * * * * *	

Ein F-Test lässt sich in gretl über Tests \rightarrow Lineare Restriktionen durchführen.

Dabei ist die Überprüfung mehrerer Restriktionen die Regel. Im Fall nur einer Restriktion entspricht der F-Test einem zweiseitigen t-Test.

3.2.1 F-Test mit einer Restriktion

Wird der F-Test wie oben beschrieben aufgerufen, so müssen im sich öffnenden Fenster die Restriktionen spezifiziert werden. Hier soll getestet werden, ob der Einfluss von Werbeausgaben (AE) und Vertriebsaufwendungen (PSE) auf die verkauften Einheiten (Units) gleich groß ist. Die Nullhypothese lautet daher H_0 : $\beta_{AE} = \beta_{PSE}$, die Gegenhypothese ist beim F-Test stets festgelegt auf H_1 : H_0 gilt nicht.

Allerdings erlaubt *gretl* nur einen numerischen Wert auf der rechten Seite des Gleichheitszeichens, daher muss die Nullhypothese umformuliert werden zu:

$$H_0:\beta_{AE}-\beta_{PSE}=0$$

In *gretl* kann diese Hypothese auf zwei verschiedene Arten eingetragen werden, beide sind in den folgenden Abbildungen zu sehen. Nachdem eine dieser Alternativen eingetragen ist, wird die Restriktion mit *OK* bestätigt. Erste Möglichkeit: Der Koeffizient von AE und der Koeffizient von PSE sind gleich groß:

```
      gretl: lineare Restriktionen
      ×

      Spezifiziere Restriktionen:

      (Bitte konsultieren Sie dafür die Hilfe)

      Rechtsklick für einige Kürzel

      b[AE] - b[PSE] = 0
```

Zweite Möglichkeit: Der dritte und der vierte Koeffizient des Modells sind gleich groß:

Es öffnet sich ein neues Fenster mit dem Output des F-Tests. Hier lassen sich die Teststatistik und der zugehörige p-Wert ablesen. Zusätzlich ist das Regressionsergebnis des restringierten Modells gezeigt.

Ein kritischer Wert kann ähnlich wie beim t-Test im Hauptfenster über *Werkzeuge* \rightarrow *Statistische Tabellen* ermittelt werden. (Allerdings zeigt der p-Wert bereits, dass die Nullhypothese zu den üblichen Testniveaus nicht verworfen werden kann.) Im Dialogfenster wird die F-Verteilung ausgewählt und Zähler- und Nennerfreiheitsgrade sowie das Testniveau α angegeben.

🛐 gretl:	🛐 gretl: kritische Werte					—		×
Normal	t	chi-Quadrat	F	bin	omial	Poisson	Weibull	DW
Zähler-FG 1 Nenner-FG 8 rechtsseitige Wahrscheinlichkeit 0,05								
S <u>c</u> hließen <u>O</u> K								

Der kritische Wert wird ausgegeben. DaF=1,20003 < k=5,31766kann die Nullhypothese nicht abgelehnt werden.

gretl: kritische Werte	_		×
			8
F(1, 8) rechtsseitige Wahrscheinlichkei komplementäre Wahrscheinlichkei Kritischer Wert = 5,31766	t = t =	0,05 0,95	

Im Konsumbeispiel hätte der t-Test aus Abschnitt ??, $H_0: \beta_1 \ge 0, 8$ gegen $H_1: \beta_1 < 0, 8$ demnach durchgeführt werden können, indem man den F-Test aufruft und die Restriktion überprüft (ACHTUNG: Bei Eingabe der Restriktion einen Dezimalpunkt an Stelle des Dezimalkommas verwenden, sonst erhält man eine Fehlermeldung!)

Im Output wird ein p-Wert von p=0,7266 ausgewiesen:

```
🌉 gretl: lineare Restriktionen
                                                         \times
                                                                -
R 🗛 🖪 🔍
Restriktion:
                                                                \wedge
b[Einkommen] = 0,8
Teststatistik: F(1, 8) = 0,131189, mit p-Wert = 0,726584
Restringierte Schätzungen:
             Koeffizient Std.-fehler t-Quotient
                                                     p-Wert
  const
             -232,580 131,557
                                          -1,768
                                                      0,1109
                           0,000000
                                         NA
              0,800000
                                                     NA
  Einkommen
  Standardfehler der Regression = 416,02
```

Dieser p-Wert bezieht sich auf die automatisch generierte, zweiseitige Alternativhypothese $H_1: H_0$ gilt nicht bzw. $H_1: \beta_1 \neq 0, 8$. Will man dagegen nur einseitig testen (nämlich gegen $H_1: \beta_1 < 0, 8$), so ist der p-Wert in diesem Beispiel zu halbieren. p/2=0,7266/2 = 0,363 deckt sich mit dem in Abschnitt ?? ermittelten Ergebnis.

3.2.2 F-Test mit zwei und mehr Restriktionen

Der F-Test erlaubt, im Gegensatz zum t-Test, auch das gleichzeitige Testen von mehreren Restriktionen. Als Beispiel sollen hier die zwei Restriktionen $\beta_{AE} = 0,03$ und $\beta_{PSE} = 0,05$ gleichzeitig getestet werden. Die Hypothesen lauten daher $H_0: \beta_{AE} = 0,03$ <u>und</u> $\beta_{PSE} = 0,05$ und $H_1: H_0$ gilt nicht. Die Gegenhypothese umfasst also folgende Fälle:

 $\beta_{AE} \neq 0,03$ oder $\beta_{PSE} \neq 0,03$ (oder $\beta_{AE} \neq 0,03$ und $\beta_{AE} \neq 0,03$).

Um den Test durchzuführen, werden nun beide Restriktionen unter Tests \rightarrow Lineare Restriktionen eingetragen.

gretl: lineare Restriktionen		×
	Spezifiziere Restriktionen: (Bitte konsultieren Sie dafür die Hilfe Rechtsklick für einige Kürzel	e)
b[AE] = 0.03 b[PSE] = 0.05		
Bootstrap verwenden		
Hilfe		<u>A</u> bbrechen <u>O</u> K

Anschließend wird das Modell geschätzt. Die Koeffizienten für AE und PSE zeigen, dass die Restriktionen umgesetzt wurden. Ein Blick auf den p-Wert zur F-Statistik macht deutlich, dass die Nullhypothese, die die beiden Parameter gleichzeitig auf die angegebenen Werte restringiert, abgelehnt werden kann.

```
      Image: Second Striktion
      -
      -
      ×

      Image: Second Striktion
      Angewendet
      .
      .
      .

      1: b[AE] = 0,03
      2: b[PSE] = 0,05
      .
      .
      .
      .

      Teststatistik: F(2, 8) = 6,04421, mit p-Wert = 0,0251523
      .
      .
      .
      .
      .

      Restringierte Schätzungen:
      .
      .
      .
      .
      .
      .
      .

      Const 374,049 413,947 0,9036 0,3874
      .
      .
      .
      .
      .
      .

      Const 374,049 413,947 0,9036 0,3874
      .
      .
      .
      .
      .
      .

      Price -0,231669 0,129395 -1,790 0,1037
      .
      .
      .
      .
      .
      .

      AE
      0,0300000 0,000000 NA
      .
      .
      .
      .
      .
      .

      Standardfehler der Regression = 175,64
      .
      .
      .
      .
      .
      .
```

Das gleichzeitige Testen von mehreren Restriktionen wird häufig zum Ausschluss von Variablen benötigt, man spricht dabei von "Nullrestriktionen". Auch wenn ein Test der Hypothese H_0 : $\beta_{[AE]} = \beta_{[PSE]} = 0$ im vorliegenden Beispiel nicht sinnvoll ist, soll er beispielhaft durchgeführt werden, um das Prinzip der *gretl*-Optionen zu veranschaulichen. Die beiden Restriktionen können wie zuvor eingegeben und das restringiert Modell geschätzt werden:

Der p-Wert ist mit $8 \cdot 10^{-7}$ bzw. 0,0000008 sehr klein, daher kann die Nullhypothese abgelehnt werden, der Einfluss von Vertriebs- und Werbeausgaben ist nicht gemeinsam gleich Null. (Gemäß dem p-Wert wäre das Schätzergebnis bei Gültigkeit der Nullhypothese nahezu unmöglich.).

```
📓 gretl: lineare Restriktionen
                                                                                                  Х
                                                                                                             -
🔏 占 📭 🔍
Restriktion angewendet
                                                                                                               \wedge
 1: b[AE] = 0
 2: b[PSE] = 0
Teststatistik: F(2, 8) = 128,067, mit p-Wert = 8,41509e-007
Restringierte Schätzungen:
                    Koeffizient Std.-fehler t-Quotient p-Wert
                     _____
                                            _____
                                                                                       _____

        const
        2096,22
        1501,01
        1,397
        0,1928

        Price
        -0,0237449
        0,469201
        -0,05061
        0,9606

        AE
        0,000000
        0,000000
        NA
        NA

        PSE
        0,000000
        0,000000
        NA
        NA

   Standardfehler der Regression = 636,887
```

Da Nullrestriktionen im Zuge der Modellspezifikation regelmäßig überprüft werden müssen, bietet gretl über Tests \rightarrow Variablen weglassen eine weitere Möglichkeit, diese Tests schnell durchzuführen.

🕅 gretl: Modell 1	- 0	\times
<u>D</u> atei <u>B</u> earbeiten	<u>Tests</u> <u>Speichern</u> <u>G</u> raphen <u>A</u> nalyse <u>L</u> aTeX	
Modell 1: KQ, Abhängige Var	Variablen weglassen 1-12 Variablen hinzufügen	

Hier müssen die beiden wegzulassenden Variablen ausgewählt werden, in diesem Fall AE und PSE.

🕅 gretl: Modelltests			×		
Wähle w	vegzulassende V	/ariablen			
const Price		AE PSE			
AE PSE	⊳				
	\				
Schätze reduziertes Mod	dell				
 Wald-Test, beruhend au 	ıf Kovarianzmat	rix			
O Sequenzielle Variableneliminierung gemäß zweiseitigem p-Wert: 0,10 ♥					
Teste nur gewählte Variablen					
<u>H</u> ilfe <u>L</u> e	eren <u>A</u> b	brechen	<u>O</u> K		

Der daraufhin entstehende Output ist etwas anders aufgebaut, die Ergebnisse sind aber identisch:

gretl: Modell 2 _ \times P Datei Bearbeiten Tests Speichern Graphen Analyse LaTeX Test von Modell 1: ~ Nullhypothese: Die Regressionskoeffizienten sind Null für die Variablen AE, PSE Teststatistik: F(2, 8) = 128,067, p-Wert 8,41509e-007 Das Weglassen von Variablen verbesserte 0 von 3 Informationskriterien. Modell 2: KQ, benutze die Beobachtungen 1-12 Abhängige Variable: Units Koeffizient Std.-fehler t-Quotient p-Wert ----const 2096,22 1501,01 1,397 0,1928 Price -0,0237449 0,469201 -0,05061 0,9606
 Mittel d. abh. Var.
 2020,833
 Stdabw. d. abh. Var.
 607,3259

 Summe d. quad. Res.
 4056253
 Stdfehler d. Regress.
 636,8872

 R-Quadrat
 0,000256
 Korrigiertes R-Quadrat -0,099718
 0,002561 P-Wert(F) 0,960635 -93.41244 Akaike-Kriterium 190,8249 F(1, 10) Log-Likelihood -93,41244 Akaike-Kriterium 190,8249 Schwarz-Kriterium 191,7947 Hannan-Quinn-Kriterium 190,4658

3.3 Kreuzeffekte der Regressoren

Es ist plausibel anzunehmen, dass die Preissensitivität der Kunden nicht konstant ist, sondern von den Werbeausgaben abhängt. Je größer die Werbeausgaben, desto geringer die Preissensitivität.

Das ursprüngliche Modell lautet

$$Units_t = const + \beta_{Price}Price_t + \beta_{AE}AE_t + \beta_{PSE}PSE_t + u_t$$

Ist nun die Preissensitivität abhängig von den Werbeausgaben, bedeutet das

$$\beta_{Price,t} = \gamma_0 + \gamma_1 A E_t \quad .$$

Ersetzen des konstanten Koeffizienten β_{Price} im ursprünglichen Linearen Modell durch $\beta_{Price,t} = \gamma_0 + \gamma_1 A E_t$ ergibt

$$Units_t = const + (\gamma_0 + \gamma_1 A E_t) Price_t + \beta_{AE} A E_t + \beta_{PSE} PSE_t + u_t$$

bzw.

$$Units_t = const + \gamma_0 Price_t + \beta_{AE}AE_t + \beta_{PSE}PSE_t + \gamma_1 P_t \times AE_t u_t + u_t$$

mit $Price_t \cdot AE_t = P_t \times AE_t$ als neuem Regressor. Um ein solches Modell mit Kreuzeffekt zu schätzen, muss über *Hinzufügen* \rightarrow *Definiere neue Variable* der neue Regressor hinzugefügt werden.

🛐 gre	etl						_		ı x
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
EDP.xls	x			<u>L</u> ogs gew	ählter Variabl	en			
ID # ◀	Variablennam	ne 🖣 Bes	schreibung	<u>Q</u> uadrate	gewählter Va	riablen			•
0	const			L <u>a</u> gs gew	ählter Variable	en			
1	Month			Erste Diff	erenzen gewä	hlter Varial	blen		
2	Units			Log-Diffe	erenzen gewäh	hlter Variab	len		
3	Price			<u>S</u> aison-Di	ifferenzen gev	vählter Var	iablen		
4	AE			<u>P</u> rozentua	ale Änderung	gewählter	Variablen		
5	PSE			Indexvaria	able				
				Zeittrend					
				Panel-Gru	uppenindex				
				<u>Z</u> ufallsva	riable				
				periodisc	he Dummies				
				Gruppen-	- <u>D</u> ummies				
				Zeitdumr	mies				
				<u>B</u> eobacht	tungsbereichs	dummy			
				Dummies	s für <u>d</u> iskrete \	/ariablen			
			U	Definiere	neue <u>V</u> ariable	ż			
Ī	2 - 💷	fx	I	Definiere	Matrix				

Im dem sich nun öffnenden Fenster muss die Formel für den neuen Regressor eingetragen werden.

🎆 gretl: Var hinzufügen	×				
Formel für neue Variable eingeben (oder nur Name für manuelle Dateneingabe)					
PxAE = AE*Price					
Hilfe	<u>A</u> bbrechen <u>O</u> K				

Anschließend wird das Modell mit der neuen Variable geschätzt. Es ergibt sich folgender Regressionsoutput:

🕅 gretl: Modell 2					_		\times
<u>D</u> atei <u>B</u> earbeiten	<u>T</u> ests <u>S</u> peichern	<u>G</u> raphen	<u>A</u> nalyse <u>L</u> aT	eΧ			6
Modell 2: KQ, Abhängige Var	benutze die iable: Units	Beobacht	ungen 1-12				
	Koeffizient	Std	fehler	t-Quotient	p-Wert		
const	1375,75	1455	,29	0,9453	0,3760		
Price	-0,811685	0	,499299	-1,626	0,1481		
AE	-0,0392996	0	,0727663	-0,5401	0,6059		
PSE	0,0729079	0	,0156269	4,666	0,0023	***	
PxAE	2,21494e-0	5 2	,10194e-05	1,054	0,3270		
Mittel d. abh	. Var. 20	20,833	Stdabw. d	. abh. Var.	607,325	9	
Summe d. quad	l. Res. 10	6034,0	Stdfehler	d. Regress.	123,076	1	
R-Quadrat	ο,	973866	Korrigier	tes R-Quadrat	0,95893	2	
F(4, 7)	65	,21209	P-Wert(F)		0,00001	3	
Log-Likelihoo	d -71	,54691	Akaike-Kr	iterium	153,093	8	
Schwarz-Krite	rium 15	5,5184	Hannan-Qu	inn-Kriterium	152,196	2	
Abgesehen von	Konstante wa	r p-Wert	am höchst	en für Variabl	e 4 (AE)		

Der Kreuzeffekt hat keinen signifikanten Einfluss, es kann weiterhin von einer konstanten Preissensitivität β_{Price} ausgegangen werden.

3.4 Alternative Kurvenformen

3.4.1 Logarithmische Spezifikation

Mit *gretl* ist es leicht möglich, das EDP-Beispiel auch in der doppelt-logarithmischen Form

$$\ln Units_t = const + \beta_{Price} \ln Price_t + \beta_{AE} \ln AE_t + \beta_{PSE} \ln PSE_t + u_t$$

zu schätzen. Dazu müssen zunächst alle relevanten Variablen ausgewählt und über $Hinzufügen \rightarrow Logs gewählter Variablen logarithmiert werden.$

🕅 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
EDP.xls	x			<u>L</u> ogs gew	/ählter Variabl	en			
ID # 1	Variablennam	ne 🖣 Bes	chreibung	<u>Q</u> uadrate	e gewählter Va	riablen			•
0	const			Lags gewählter Variablen					
1	Month			Erste Diff					
2	Units			Log-Diffe					
3	Price			Saison-D					
4	AE			Prozentu					
5	PSE			Indexvari					

Die logarithmierten Variablen tauchen nun auch in der Übersicht auf und sind am vorangestellten I_{-} zu erkennen.

🕅 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	
EDP.xls	x *								
ID # 🖣	Variablennam	ie 🖣 Bes	chreibung						•
0	const								
1	Month								
2	Units								
3	Price								
4	AE								
5	PSE								
6	I_Units	=	og von Un	its					
7	I_Price	=	og von Pri	ce					
8	I_AE	=	og von AE						
9	I_PSE	=	og von PS	ε 🦯 👘					

Das Modell kann nun wie gewohnt, diesmal mit den logarithmierten Variablen, geschätzt werden.

Es ergibt sich folgender Regressionsoutput:

🛐 gretl: Modell 1				_		\times
<u>D</u> atei <u>B</u> earbeiten <u>T</u> ests <u>S</u>	peichern <u>G</u> raphen	<u>A</u> nalyse	<u>L</u> aTeX			6
Modell 1: KQ, benutz Abhängige Variable:	e die Beobach 1_Units	tungen 1	-12			
Koeffiz	ient Stdfe	ehler	t-Quotient	p-Wert		
const -4,664	16 1,737	90	-2,684	0,0278	**	
1_Price -0,424	409 0,1849	923	-2,295	0,0509	*	
1 AE 0,443	414 0,1628	807	2,724	0,0261	**	
1_PSE 1,077	0,303	144	3,554	0,0075	***	
Mittel d. abh. Var.	7,565077	Stdaby	. d. abh. V	ar. 0,	328031	
Summe d. quad. Res.	0,038552	Stdfel	ler d. Regr	ess. 0,	069419	
R-Quadrat	0,967430	Korrig	iertes R-Qu	adrat 0,	955216	
F(3, 8)	79,20704	P-Wert	;(F)	2,	73e-06	
Log-Likelihood	17,41665	Akaike	-Kriterium	-26	,83330	
Schwarz-Kriterium	-24,89367	Hannar	-Quinn-Krit	erium -27	,55142	

Die Schätzkoeffizienten sind nun als Elastizitäten interpretierbar. Der Koeffizient des logarithmierten Preises stellt die Preiselastizität der Nachfrage dar und besagt, dass eine 1%-ige Preiserhöhung gemäß der Schätzung einen Absatzrückgang von 0,42% erwarten lässt.

3.4.2 Quadratische Spezifikation

Auch ein quadratischer Zusammenhang, beispielsweise im Fall der Vertriebsausgaben, ist denkbar. Analog zur Logarithmierung lassen sich Variablen über *Hinzufügen* \rightarrow *Quadrate gewählter Variablen* quadrieren. Alternativ ist das auch über *Hinzufügen* \rightarrow *Definiere neue Variable* möglich. Letzteres ist die allgemeiner einsetzbare Variante und soll deshalb hier vorgestellt werden.

🋐 gre	etl						_		×		
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-		
EDP.xls	x *			<u>L</u> ogs gew	vählter Variabl	en		1			
ID # ◀	Variablennam	ne 🖣 Bes	chreibung	<u>Q</u> uadrate	e gewählter Va	riablen			•		
0	const			L <u>a</u> gs gew	vählter Variabl	en					
1	Month			Erste Diff	erenzen gewä	hlter Varia	blen				
2	Units			Log-Diffe	erenzen gewäh	hlter Variak	olen				
3	Price			<u>Saison-D</u>	ifferenzen gev	vählter Var	riablen				
4	AE			<u>P</u> rozentu	Prozentuale Änderung gewählter Variablen						
	PSE			<u>I</u> ndexvari Zeit <u>t</u> rend <u>P</u> anel-Gr	able uppenindex						
				<u>Z</u> ufallsva	<u>Z</u> ufallsvariable						
				periodisc	he Dummies						
				Gruppen	- <u>D</u> ummies						
				Zeitdum	mies						
				Beobacht	tungsbereichs	dummy					
				Dummie	s für <u>d</u> iskrete \	Variablen					
			U	Definiere	neue <u>V</u> ariable	£					
	2 -	fx	X	Definiere	<u>M</u> atrix						

Es öffnet sich ein neues Fenster, in dem die Formel für die neue Variable eingetragen werden muss.

🕅 gretl: Var hinzufügen					
Formel für neue Varia (oder nur Name für r	able eingeben nanuelle Dateneingabe)				
sq_PSE = PSE^2					
Hilfe	<u>A</u> bbrechen <u>O</u> K				

Dabei ist zu unbedingt zu beachten, dass *gretl* bei der Eingabe von $\hat{}$ das nächste Zeichen automatisch höher stellt (PSE^2), diese Darstellung aber nicht interpretieren kann und dann eine Fehlermeldung ausgibt aus. Um das zu vermeiden, muss nach dem $\hat{}$ die Leertaste gedrückt und dann wie im Screenshot gezeigt fortgefahren werden.

📓 gretl: Modell spezifizie	eren		_		×
4-	к	Q			
const Month Units Price AE PSE sq_PSE			Abhäng Units I als Vore Reg const Price AE PSE sq_PSE	gige Varia einstellun gressoren	ng
Robuste Standardfehle	r HC1				
<u>H</u> ilfe <u>L</u> ee	eren	Abl	brechen	<u>0</u>	к

Anschließend muss das Modell mit der neuen Variable geschätzt werden.

Die Schätzung des Modells liefert folgenden Output:

🕅 gretl: Modell 1					_		×
<u>D</u> atei <u>B</u> earbeiten	<u>T</u> ests <u>S</u> peich	ern <u>G</u> raphen	<u>A</u> nalyse <u>L</u> aTeX				8
Modell 1: KQ, Abhängige Var	benutze di iable: Unit	e Beobacht	ungen 1-12				
		-					
	Koeffizier	t Std	fehler	t-Quotient	p-Wert		
const	-390,028	1324	,23	-0,2945	0,7769		
Price	-0,299749	0	,109709	-2,732	0,0292	**	
AE	0,036040	07 0	,0148673	2,424	0,0458	**	
PSE	0,082681	.9 0	,0786303	1,052	0,3280		
sq_PSE	-2,342426	-07 1	,09650e-06	-0,2136	0,8369		
Mittel d. abh	. Var.	2020,833	Stdabw. d.	abh. Var.	607,3259	э	
Summe d. quad	. Res.	122058,4	Stdfehler d	l. Regress.	132,0489	9	
R-Quadrat		0,969916	Korrigierte	s R-Quadrat	0,952726	5	
F(4, 7)		56,42103	P-Wert(F)		0,000021	L	
Log-Likelihoo	d -	72,39135	Akaike-Krit	erium	154,7827	7	
Schwarz-Krite	rium	157,2072	Hannan-Quin	n-Kriterium	153,8851	L	
Abgesehen von	Konstante	war p-Wert	am höchsten	für Variabl	e 6 (sq_H	PSE)	

Ein quadratischer Einfluss der Vertriebsausgaben kann somit nicht festgestellt werden.

3.5 Daten speichern

Im Zuge der letzten Modellerweiterungen wurden im vorangegangenen Abschnitt neue Variablen definiert und erzeugt. Diese lassen sich im *gretl*-eigenen Datenformat .gdt als *gretl*-Datendatei speichern oder in anderen Datenformaten exportieren:

Wählt man unter $Datei \rightarrow Daten speichern$, so erstellt das Programm die gretl-Datendatei EDP-Daten.gdt

1	gretl							_		×
<u>D</u> at	ei <u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> u	fügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
	<u>Ö</u> ffne Daten Daten anhänger	n	I	-						٩
	Daten <u>s</u> peicherr	1	Strg+S							
	Daten speichern Daten exportiere Senden an <u>N</u> euer Datensatz Schließe Datens <u>A</u> rbeitsverzeichn	n <u>a</u> ls en z atz nis	Strg+N							
	S <u>k</u> riptdateien Sit <u>z</u> ungsdateien Daten <u>b</u> anken	I								
	<u>B</u> eenden		Strg+Q	2						
			U	ndatier	t: Voller	Bereich 1 - 1	2			
iii	>-	fx	X 🖉	β	8 6	В				

Die Daten können jedoch auch als Excel-Datei bzw. im CSV–Format gespeichert werden. Hierzu ist $Datei \rightarrow Daten$ exportieren aufzurufen, die gewünschten Reihen zu selektieren und das CSV-Format (Voreinstellung) zu wählen. Nun müssen im Dialogfenster noch Spaltenseparator und Dezimaltrennzeichen angegeben werden. Da in der deutschen Notation das Komma als Dezimalzeichen dient, sollte als Spaltenseparator das Semikolon gewählt werden.

🎆 Daten exportieren		arath Datantrannzaichan
Wähle z Month	u speichernde Variablen Month	Trennzeichen für Datenspalten:
Units Price AE PSE sq_PSE	Units Price AE PSE sq_PSE	 Komma (,) Leerzeichen Tab Semikolon
	~	Dezimalseparator: O Punkt (.) () Komma (,)
Format wählen CSV	eren <u>A</u> bbrechen	<u>Abbrechen</u> <u>OK</u>

Der folgende screenshot zeigt eine mögliche Datei im CSV-Format, die mit Excel geöffnet werden und dann als xlsx-Datei gespeichert werden kann.

ŀ	Automatisches S	peichern 🖲) 🖬 ५,	¢		
Da	atei Start	Einfügen S	eitenlayout F	ormeln Date	en Überprüfe	n Ansicht
Einfügen Tuischarablaga			Calibri - F <i>K</i> U - E	11 • A A		≫ - ab Tex
	Zwischenabia	ge	Scinin	lari		Austicituit
A1	•	$\pm \times $	fx Mo	onth		
	А	В	С	D	Е	F
1	Month	Units	Price	AE	PSE	sq_PSE
2	Januar	2500	3800	26800	43000	1849000000
3	Februar	2250	3700	23500	39000	1521000000
4	März	1750	3600	17400	35000	1225000000
5	April	1500	3500	15300	34000	1156000000
6	Mai	1000	3200	10400	26000	676000000
7	Juni	2500	3200	18400	41000	1681000000
8	Juli	2750	3200	28200	40000	160000000
9	August	1750	3000	17400	33000	1089000000
10	September	1250	2900	12300	26000	676000000
11	Oktober	3000	2700	29800	45000	2025000000
12	November	2000	2700	20300	32000	1024000000
13	Dezember	2000	2600	19800	34000	1156000000
14						

3.6 Dummy-Variablen

Abschließend soll der Gebrauch von Dummy-Variablen in *gretl* illustriert werden. Auch wenn *gretl* die Möglichkeit bietet, programmintern neue Variablen zu definieren, ist es häufig einfacher, diese zunächst in Excel zu erstellen und anschließend in *gretl* einzulesen.

Schließen Sie deshalb die gretl-Sitzung mit Datei \rightarrow Beenden und speichern Sie die Befehle nicht. Öffnen Sie dann die Datei Konsumausgaben.xlsx und ergänzen Sie diese wie folgt: Es wird angenommen, dass die ersten fünf Haushalte Einpersonen-, die übrigen fünf Haushalte dagegen Mehrpersonenhaushalte sind. Definieren Sie deshalb eine Mehrpersonendummy wie im folgenden Bildschirmfenster gezeigt:

ļ						5		
Da	atei	Start	Einfüg	en S	eitenlay	out	Formel	n D
Linfügen ↓ Kopieren ↓ Einstügen ↓ Kopieren ↓ Kopieren ↓ ↓ Format übertragen Zwischenablage					Calibri F <i>K</i>	∐ - Scł	 11 □□ - □ □ □ □ 	• A
G1	0	Ŧ	1	× v	f _x			
	A			3		С		
			Konsu	mausg				
1	Einkom	men	aben		D_Me	hrpe	rsonen	
2		892		239			0	
3		2533		1227			0	
4		1860		1365			0	
5		3721		2389			0	
6		1966		730			0	
7		1036		849			1	
8		3022		2679			1	
_							4	
9		2317		1918			1	
9 10		2317 1544		1918 1511			1	

Öffnen Sie dann die modifizierte Exceldatei in gretl:

🦉 gre	etl						_		×
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hin <u>z</u> ufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	-
Konsur	Konsumfunktion_mitDummy.xlsx								
ID # Variablenname Beschreibung								4	
0	const								
1	Einkommen								
2	Konsumausg	Jaben							
3	D_Merpersor	nen							

3.6.1 Variables Absolutglied

Das Modell kann in gretl wie gewohnt geschätzt werden, die Dummyvariable $D_{Mehrpersonen}$ wird lediglich als zusätzliche unabhängige Variable in das Modell aufgenommen. Daraufhin ergibt sich der folgende Regressionsoutput.

🕅 gretl: Modell 1						_		\times
<u>D</u> atei <u>B</u> earbeiten <u>T</u> ests	<u>S</u> peichern <u>G</u> rap	hen	<u>A</u> nalyse <u>L</u> a	TeX				8
Modell 1: KQ, benut Abhängige Variable:	tze die Beoba Konsumausga	chtu ben	ingen 1-1	0				
	Koeffizient	Std.	-fehler	t-Quotient	p	-Wert		
const -	-459,186	232,	267	-1,977	ο,	0886	*	
Einkommen	0,751543	ο,	0929400	8,086	8,	51e-05	***	
D_Mehrpersonen	663,622	157,	244	4,220	ο,	0039	***	
Mittel d. abh. Var.	1504,30	0	Stdabw.	d. abh. Var.		778,82	235	
Summe d. quad. Res.	. 432370,	6	Stdfehle	r d. Regress		248,53	302	
R-Quadrat	0,92079	8	Korrigie	rtes R-Quadra	at	0,8981	169	
F(2, 7)	40,6908	6	P-Wert(F)		0,0001	140	
Log-Likelihood	-67,5616	5	Akaike-K	riterium		141,12	233	
Schwarz-Kriterium	142,031	1	Hannan-Q	uinn-Kriteri	am	140,12	275	

Offensichtlich liegen die Konsumausgaben in Mehrpersonenhaushalten signifikant über denen von Einpersonenhaushalten. Das Absolutglied liegt im Fall $D_i^{MP} = 1$ um 663,60 Euro über dem eines Einpersonenhaushaltes, die Konsumfunktion der Mehrpersonenhaushalte ist gegenüber jener der Single–Haushalte um diesen Betrag nach oben verschoben. Die folgende Grafik wurde zur Illustration in Excel erstellt, sie gehört nicht zum gret/–Output. Einpersonenhaushalte sind durch Dreiecke, Mehrpersonenhaushalte durch Punkte dargestellt.

3.6.2 Variable Steigungsparameter

Neben dem Einfluss auf das Absolutglied ist denkbar, dass die Zugehörigkeit zur Gruppe der Mehrpersonen- bzw. der Einpersonenhaushalte auch einen Einfluss auf den Steigungsparameter hat. Es gilt dann

$$\beta_{1,i} = \gamma_0 + \gamma_1 D_{Mehrpersonen,i}$$

und der Kreuzeffekt $Einkommen \cdot D_{Mehrpersonen}$ muss wie in Abschnitt ?? gezeigt im Modell berücksichtigt werden. Dafür ist eine neue Variable zu definieren und hinzuzufügen:

Anschließend wird das Modell mit der zusätzlichen Variable neu geschätzt. Der Regressionsoutput zeigt hier, dass die marginale Konsumquote (Steigung der Schätzgeraden) in einem Mehrpersonenhaushalt nicht signifikant verschieden ist von der eines Einpersonenhaushalts.

(Hinweis: Die letztgenante Schätzung unterscheidet sich von der getrennten Schätzung zweier Konsumfunktion für Ein- und Mehrpersonenhaushalte allein dadurch, dass im obigen Fall eine gleich große Störgrößenvarianz σ^2 für beide Gruppen angenommen wird.)

Lassen Sie die gretl-Sitzung geöffnet und gehen Sie zum nächsten Abschnitt über.

4 Skriptdateien erstellen und modifizieren

In diesem Schlusskapitel wird angedeutet, wie *gretl* als Syntax-orientierte Programmiersprache genutzt werden kann, womit auch die Bearbeitung komplexerer Aufgaben möglich wird.

Schließen Sie die *gretl*-Sitzung aus dem vorangehenden Abschnitt und wählen Sie diesmal die Option, die ausgeführten Befehle zu speichern:

gretl: Speichere Befehle								
Eine Aufzeichnung der ausgeführten Befehle speichern?								
🗹 Bei ungespeicherten Änderungen immer nachfragen								
<u>H</u> ilfe	Ja	<u>N</u> ein	Abbrechen					

Geben Sie der "Befehlsdatei" einen geeigneten Namen und wählen Sie einen geeigneten Speicherort:

🞇 gretl: Datei speiche	m	X
<u>N</u> ame:	konsumdummylinp	
In <u>O</u> rdner speichern:	Image: sinaw_ Documents gretl	Ordner anlegen
Orte Suchen Zuletzt verwendet	Name	~

Dieser Skriptdatei wird automatisch das Suffix .inp für "Input"' angehängt. Sie enthält sämtliche Befehle, die in der betreffenden Sitzung ausgeführt wurden.

Doppelklick auf die Datei konsumdummy.inp im betreffenden Verzeichnis verknüpft die Datei standardmäßig mit *gretl* und öffnet den *gretl*-internen Skripteditor. Im vorliegenden Beispiel ist die Syntax selbsterklärend:

Über die "Zahnrad–Schaltfläche" *Ausführen* werden diese Befehle in chronologischer Reihenfolge erneut ausgeführt und die Ergebnisse in einem Ausgabefenster dargestellt:

```
🌆 gretl: Skriptausgabe
                                                                                          \times
                                                                                             ् 🖻
🖥 占 🗊 🖈 🖬 🕕
gretl-Version 2017a
Aktuelle Sitzung: 2018-05-31 14:05
# Log gestartet 2018-05-30 14:41
# Aufzeichnung der Sitzungs-Befehle. Bitte beachten, dass diese
# vor Ausführen als Skript wohl überarbeitet werden muss.
? open "C:\gretl Beispiel\Konsumdummy.xlsx"
Fand 1 gültige(s) Tabellenblatt/blätter
Fand 3 Variablen und 10 Beobachtungen
Liste 4 Variablen auf:
  0) const

    Einkommen

                                             Konsumausgaben
  D Mehrpersonen
# Modell 1
? ols Konsumausgaben 0 Einkommen D_Mehrpersonen
Modell 1: KQ, benutze die Beobachtungen 1-10
Abhängige Variable: Konsumausgaben
                     Koeffizient Std.-fehler t-Quotient p-Wert
  _____

        const
        -459,186
        232,267
        -1,977
        0,0886
        *

        Einkommen
        0,751543
        0,0929400
        8,086
        8,51e-05
        ***

        D_Mehrpersonen
        663,622
        157,244
        4,220
        0,0039
        ***
```

Um an die letzte Sitzung anknüpfend weiterzuarbeiten, kann die Skriptdatei bearbeitet und dabei z. B. um weitere Befehle ergänzt werden. Im vorliegenden Beispiel soll – ohne Verwendung der Mehrpersonendummy – eine quadratische Konsumgleichung der

Form

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + u_i$$

geschätzt werden. Dafür wurde die Befehlsdatei wie folgt ergänzt (Kommentarzeilen werden mit dem Rautensymbol # eingeleitet):

Ausführen des modifizierten Skripts und Ersetzen des "alten" Outputs liefert das zusätzliche Ergebnis:

grea. Skiptudsgabe 2					-			×
🖥 占 🗊 🖈 🖬 🛛	3						Q	9
Abgesehen von Kons	stante war p-Wer	t am höchsten f	ür Variable	e 4 (DxE	inkom	men)		^
# Frgänzung ======								
# guadratische Kor	sumfunktion (ob	ne Dummies)						
? guad Einkommen=E	inkommen^2	ine Dunanzes,						
Erzeugte Reihe gua	d Einkommen (ID	5)						
? ols Konsumausgab	en 0 Einkommen	quad Einkommen						
Modell 3: KQ, benu	tze die Beobach	tungen 1-10						
Abhängige Variable	: Konsumausgabe	n						
	Koeffizient	Stdfehler	t-Quotient	t p-Wer	t			
const					-			
	-363,359	915,374	-0,3970	0,703	2			
Einkommen	-363,359 1,01298	915,374 0,878903	-0,3970 1,153	0,703 0,286	2 9			
Einkommen quad_Einkommen	-363,359 1,01298 -6,10798e-05	915,374 0,878903 0,000193303	-0,3970 1,153 -0,3160	0,703 0,286 0,761	2 9 2			
Einkommen quad_Einkommen Mittel d. abh. Var	-363,359 1,01298 -6,10798e-05	915,374 0,878903 0,000193303 Stdabw. d. ab	-0,3970 1,153 -0,3160 ph. Var.	0,703 0,286 0,761 778,823	2 9 2 5			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res	-363,359 1,01298 -6,10798e-05 . 1504,300 . 1510969	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d.	-0,3970 1,153 -0,3160 Dh. Var. Regress.	0,703 0,286 0,761 778,823 464,599	2 9 2 5 5			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res R-Quadrat	-363,359 1,01298 -6,10798e-05 . 1504,300 . 1510969 0,723220	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d. Korrigiertes	-0,3970 1,153 -0,3160 bh. Var. Regress. R-Quadrat	0,703 0,286 0,761 778,823 464,599 0,64414	2 9 2 5 5 0			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res R-Quadrat F(2, 7)	-363,359 1,01298 -6,10798e-05 5. 1504,300 5. 1510969 0,723220 9,145414	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d. Korrigiertes P-Wert(F)	-0,3970 1,153 -0,3160 wh. Var. Regress. R-Quadrat	0,703 0,286 0,761 778,823 464,599 0,64414 0,01115	2 9 2 5 5 0 5			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res R-Quadrat F(2, 7) Log-Likelihood	-363,359 1,01298 -6,10798e-05 5. 1504,300 5. 1510969 0,723220 9,145414 -73,81777	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d. Korrigiertes P-Wert(F) Akaike-Kriter	-0,3970 1,153 -0,3160 wh. Var. Regress. R-Quadrat	0,703 0,286 0,761 778,823 464,599 0,64414 0,01115 153,635	2 9 2 5 5 0 5 5			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res R-Quadrat F(2, 7) Log-Likelihood Schwarz-Kriterium	-363,359 1,01298 -6,10798e-05 1504,300 1510969 0,723220 9,145414 -73,81777 154,5433	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d. Korrigiertes P-Wert(F) Akaike-Kriter Hannan-Quinn-	-0,3970 1,153 -0,3160 wh. Var. Regress. R-Quadrat tium Kriterium	0,703 0,286 0,761 778,823 464,599 0,64414 0,01115 153,635 152,639	2 9 2 5 5 5 5 5 5 5 7			
Einkommen quad_Einkommen Mittel d. abh. Var Summe d. quad. Res R-Quadrat F(2, 7) Log-Likelihood Schwarz-Kriterium	-363,359 1,01298 -6,10798e-05 1504,300 1510969 0,723220 9,145414 -73,81777 154,5433	915,374 0,878903 0,000193303 Stdabw. d. ak Stdfehler d. Korrigiertes P-Wert(F) Akaike-Kriter Hannan-Quinn-	-0,3970 1,153 -0,3160 wh. Var. Regress. R-Quadrat tium Kriterium	0,703 0,286 0,761 778,823 464,599 0,64414 0,01115 153,635 152,639	2 9 2 5 5 5 5 5 5 7			

Im *gretl*-Hauptfenster können Sie unter *Hilfe* eine interaktive Befehlsdokumentation öffnen, die alle *gretl*-internen Befehle, die bei der Bearbeitung des Skripts verwendet werden können, beschreibt.

🛐 gretl: Befehlsdokur	nentation						- [I X		
Θ Θ							🔍 diese Seite	~ 🖻		
Index Tests	^	Gretl-Befehlsdokumentation								
 E Statistiken 	ad ar ca	ld bond tch	adf arch chow	anova arima clear	append biprobit coeffsum data	ar boxplot coint	arl break coint2 debug			
 Braphen 	de du v eq	elete aration mprint	diff elif equation	difftest else estimate	discrete end eval	dpanel endif fcast	dummify endloop flush	~		

Für die tiefergehende Beschäftigung mit *gretl* finden Sie unter *Hilfe* auch drei sehr hilfreiche Dokumente im PDF-Format:

- Ein Handbuch zu den gretl-Befehlen,
- eine gretl-Dokumentation,
- eine Einführung in *hansl*, die Programmiersprache, in der gretl geschrieben ist.

🌉 gre	etl				_	C) X		
<u>D</u> atei	<u>W</u> erkzeuge Date <u>n A</u>	Ansicht Hinzufügen	<u>S</u> tichprobe	<u>V</u> ariable	<u>M</u> odell	<u>H</u> ilfe	6		
Konsu	🛱 B	efehls <u>d</u> okur	ne						
ID # 🖣	THE F	unktionsdok	au						
0	const	8 53 -							
1	Einkommen	🔁 🖪	🔁 <u>B</u> enutzerhandk						
2	📆 в	efehlsdokur	ne						
3	3 D_Mehrpersonen								
4	4 DxEinkommen Einkommen*D_Mehrpersonen								
5		🔁 <u>H</u> ansl-Einführ							
						🔁 E	unktionspak	e	
	Datei <u>D</u> atei Konsur ID # 0 1 2 3 4 5	gretl Datei Werkzeuge Daten A Konsumfunktion_mitDummy.xk ID # Variablenname Besc 0 const C 1 Einkommen Einkommen 2 Konsumausgaben D_Mehrpersonen 4 DxEinkommen Einkommen 5 quad_Einkommen Einkommen	gretl Datei Werkzeuge Daten Ansicht Hinzufügen Konsumfunktion_mitDummy.xlsx ID # Variablenname Beschreibung 0 const 1 Einkommen 2 Konsumausgaben 3 D_Mehrpersonen 4 DxEinkommen Einkommen*D_Mehrperson 5 quad_Einkommen Einkommen^2	gretl Datei Werkzeuge Daten Ansicht Hinzufügen Stichprobe Konsumfunktion_mitDummy.xlsx ID # Variablenname Beschreibung 0 const 0 const	Image: gret Datei Werkzeuge Daten Ansicht Hinzufügen Stichprobe Variable Konsumfunktion_mitDummy.xlsx ID # Variablenname Beschreibung O const 0 const Const	gretl	gretl — E Datei Werkzeuge Daten Ansicht Hinzufügen Stichprobe Variable Modell Hilfe Konsumfunktion_mitDummy.xlsx III B IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	gretl —	

Viel Spass beim Entdecken der vielfältigen Möglichkeiten

von ökonometrischen Analysen im Allgemeinen

und von gretl im Besonderen!